

Contents

About this course 1

1. Introduction 2
 1.1 Audio frequencies 2
 1.2 Digital audio 3
 1.2.1 Analogue vs digital signals 3
 1.2.2 Sampling 3
 1.2.3 Aliasing 4
 1.2.4 Nyquist sampling theorem 4
 1.3 Analogue to digital conversion 4
 1.3.1 The AD7680 ADC 5
 1.4 Digital to analogue conversion 6
 1.4.1 The AD5662 DAC 7
 1.4.2 The E-blocks Hardware 8
 1.4.3 What is SPI 10

2. Digital signal processing 12
 2.1 The dsPIC microcontroller 12
 2.1.1 What is a microcontroller 12
 2.1.2 Differences between dsPIC and PIC 12
 2.1.3 Dynamic pipelining 14
 2.1.4 Other DSP features 14

3. Program 1 - Laying the foundations 19
 3.1 Introduction 19
 3.2 Objective 19
 3.3 Requirements 19
 3.4 Flowcode program outline 19
 3.5 The system components 19
 3.5.1 The DSP System component 20
 3.5.2 The DSP Input component 20
 3.5.3 The DSP Output component 20
 3.5.4 The SPI component 20
 3.5.5 The graphical LCD component 20
 3.6 Creating the program 21
 3.6.1 The Dashboard panel 21
 3.6.2 The flowchart 22
 3.6.3 The hardware 23
 3.6.4 Testing 24
 3.6.5 The Flowcode program in detail 24
 3.7 Further work 25

4. Program 2 - Adding an echo 26
 4.1 Introduction 26
 4.2 Objective 26
 4.3 Requirements 26
 4.4 Flowcode program outline 26
 4.5 The system components 27
 4.5.1 The DSP Scale component 27
 4.5.2 The DSP Sum component 27
 4.5.3 The DSP Delay component 27
 4.6 Creating the program 28
 4.6.1 The dashboard panel 28

 4.6.2 The flowchart 30
 4.6.3 The hardware 31
 4.6.4 Testing 31
 4.6.5 The flowcode program in detail 32
 4.7 Further work 32

5. Program 3 - Reverberation 33
 5.1 Introduction 33
 5.2 Objective 33
 5.3 Requirements 33
 5.4 Flowcode program outline 33
 5.5 The system components 34
 5.5.1 The first DSP Scale component 34
 5.5.2 The DSP Sum component 34
 5.5.3 The DSP Delay component 34
 5.5.4 The second DSP Scale component 34
 5.6 Creating the program 35
 5.6.1 The dashboard panel 35
 5.6.2 The flowchart 37
 5.6.3 The hardware 38
 5.6.4 Testing 38
 5.6.5 The flowcode program in detail 38
 5.7 Further work 38

6. Signals and waveforms 39
 6.1 Noise 40
 6.2 Signal waveforms 41

7. Program 4 - Sine wave generator 42
 7.1 Introduction 42
 7.2 Objective 42
 7.3 Requirements 42
 7.4 Flowcode program outline 42
 7.5 The system components 43
 7.5.1 The Frequency generator component 44
 7.5.2 The DSP Scale component 45
 7.5.3 The switches 45
 7.6 Creating the program 45
 7.6.1 The dashboard panel 45
 7.6.2 The flowchart 47
 7.6.3 The hardware 49
 7.6.4 Testing 49
 7.6.5 The flowcode program in detail 51
 7.7 Further work 51

8. Program 5 - Waveform generator 52
 8.1 Introduction 52
 8.2 Objective 52
 8.3 Requirements 52
 8.4 Flowcode program outline 52
 8.5 The system components 53
 8.5.1 The Frequency generator components 53
 8.6 Creating the program 54
 8.6.1 The dashboard panel 54
 8.6.2 The flowchart 56

 8.6.3 The hardware 58
 8.6.4 Testing 58
 8.6.5 The flowcode program in detail 59
 8.7 Further work 59

9. Filters 60
 9.1 Types of filter 60
 9.2 Filter action 61
 9.3 Filter properties 62
 9.4 Filter problems 63

10. Program 6 - Low pass filter 64
 10.1 Introduction 64
 10.2 Objective 64
 10.3 Requirements 64
 10.4 Flowcode program outline 64
 10.5 The system components 65
 10.5.1 The DSP Filter component 65
 10.5.2 The switches 65
 10.6 Creating the program 66
 10.6.1 The dashboard panel 66
 10.6.2 The flowchart 68
 10.6.3 The hardware 70
 10.6.4 Testing 70
 10.6.5 The flowcode program in detail 70
 10.7 Further work 71

11. Digital filters 72
 11.1 Analogue versus digital filters 72
 11.2 Digital filters 72
 11.2.1 Implementing digital filters 73

12. Program 7 - High pass filter 74
 12.1 Introduction 74
 12.2 Objective 74
 12.3 Requirements 74
 12.4 Flowcode program outline 74
 12.5 The system components 74
 12.5.1 The DSP Filter component 75
 12.5.2 The switches 75
 12.6 Creating the program 75
 12.6.1 The dashboard panel 75
 12.6.2 The flowchart 77
 12.6.3 The hardware 78
 12.6.4 Testing 78
 12.6.5 The flowcode program in detail 78
 12.7 Further work 79

 Page 1

About this course

Aims:

The principal aim of the course is to enable you to use Flowcode to program the dsPIC microcontroller.
The examples focus largely on using this microcontroller in digital audio applications.

 On completing this course you will have learned:
• the fundamentals of audio digital processing;
• the functionality of the Matrix dsPIC hardware;
• techniques to program the dsPIC microcontroller to process audio signals;
• the commands and syntax used to input, process and output audio signals.

What you will need:

To complete this course you will need the following equipment:

• Flowcode 8 (or later) software

• E-blocks including:
• a dsPIC programmer with a microcontroller device, (BL0032)

• a DSP Input E-block (EB085)

• a DSP Output E-block (EB086)

• a Switch unit E-block (BL0145)

• a Graphical LCD E-Block (BL0157)

• a high impedance microphone and earpiece

• a universal power supply (HP2666)
• E-blocks splitter cable

Using this course:

This course presents you with a number of tasks detailed in the following text. All the information you
need to complete them is contained in the notes.

Before starting any exercise, you are advised to spend time familiarising yourself with the information
contained in the course, so that you know where to look when you get stuck.

Time: If you undertake all of the exercises on this course then it will take you between twelve and
sixteen hours.

 Page 2

1. Introduction

Digital signal processing (DSP) is used in a variety of areas, many related to
audio and video production. Its uses include:

• the enhancement of visual images;

• the synthesis of sounds;

• speech recognition;

• filters - with characteristics far superior to analogue filters.

• data compression /decompression.

 When an audio or video signal is digitised, much of the digital information produced is
redundant - the information is duplicated in adjacent samples.

 DSP can convert this information into something much more compact, speeding up
transmission, or reducing storage demands. Later, it can restore it to its original form.

The course introduces digital signal processing techniques applied to digital audio.
The diagram shows the structure of a typical system

Before creating the first program, we look at the components of this system, and related concepts.

1.1 Audio frequencies

Sound is a wave motion in which disturbances travel as longitudinal waves, meaning that the air
particles vibrate backwards and forwards in the same plane as the path of the wave.
This is rather like the way compressions travel along a coiled spring.

The human ear is reckoned to respond to frequencies in the range 20Hz to 20kHz.

• Below 20Hz, 'sounds' are felt as high-speed drumming, rather than heard as a sound.

• Humans hear best in the 1kHz to 5kHz range:

• a 100Hz tone needs a larger amplitude to sound as loud as a 1kHz tone;
• a 10kHz tone needs a larger amplitude to sound as loud as a 5kHz tone.

• At low frequencies, we can distinguish between sounds that are only a few hertz apart. At high
frequencies, sounds must be hundreds of hertz apart for us to tell the difference.

• Most common sounds contain a range of frequencies, known as the fundamental (lowest
frequency) and harmonics (higher frequencies) that give characteristics to the sound.

• The highest note on a standard piano emits a fundamental frequency around 4kHz.

• Above around 10kHz, the sounds are enhancements to sounds, adding brilliance, created by
instruments such as cymbals and bells, or sibilance (the hissing parts of speech).

 Page 3

1.2 Digital audio

Digital audio techniques have largely replaced analogue processes in audio and video engineering - CD's
replaced vinyl discs; DVD's replaced videotape; music synthesisers went from analogue to digital. Before
we look at digital processing techniques, we need to know what a digital signal is.

1.2.1 Analogue vs digital signals

An analogue signal is an electrical copy (analogy) of a natural effect, such as a sound wave, a light
wave, or a pressure variation. As these vary continuously in size, so the analogue electrical signal varies
in voltage (usually), having any value of voltage within the range of the system’s power supply voltage.
It can be precise copy of the process it represents.

Digital signals are sequences of numerical information about the process. For electrical simplicity, they
rely on the binary number system - a string of 0’s and 1’s. These are represented by specific voltage
levels within the electronic system. For example, with a power supply voltage of 12V, logic 1 may be any
voltage between 8V and 12V, while logic 0 is represented by voltages between 0V and 4V.

1.2.2 Sampling:

Digital signal processing involves sampling (measuring) the analogue signal periodically. As a result, not
every part of it is catalogued, and any changes that occur between the samples will be missed. The
challenge is to choose an appropriate sampling frequency. The faster the sampling, the less likely it is
that information is missed, but the greater the amount of data generated, and the resulting processing
burden.

In this diagram, the sampling frequency is not best suited to the signal. One peak, (corresponding to a
high frequency component of the signal,) will be missed by the sampling, meaning that reconstruction of
the signal will not be totally accurate.

 Page 4

1.2.3 Aliasing:

 The diagram illustrates what can happen when the sampling rate is not chosen correctly. An alias
frequency, which 'fits' the samples taken, and indistinguishable from the true signal can be generated in
the reconstruction. A common example of this is often seen in 'western' films, where the spoked wheels
on a wagon appear to be standing still or even rotating backwards.

1.2.4 The Nyquist sampling theorem (or Nyquist-Shannon theorem):

 This looks at how often samples must be taken in order to allow accurate reconstruction of the signal. It
says that, for this to happen, the sampling frequency must be at least twice the highest frequency
present in the signal being sampled. In effect, it says that every 'peak' and 'trough' in the signal must be
sampled. Otherwise, aliasing can occur.

 One consequence is the sampling rate of 44.1kHz (44,100 samples per second,) chosen for CD
recording. With human hearing potentially capable of detecting frequencies up to 20kHz, the Nyquist
criterion for sampling audio would be 40,000 samples per second.

If a lower sample rate were chosen, say 20kHz, then aliases would be generated with frequencies
greater than 10kHz, i.e. audible to the human ear. With 44.1kHz, aliases with frequencies greater than
22.05kHz can be created, but these can be filtered out, using a low-pass filter which allows frequencies
up to 20kHz to pass unhindered, but which attenuates frequencies above that. Having a tolerance of
2.05kHz reduces the demands on the design of this filter.

1.3 Analogue to digital conversion:

Audio signals are analogue - they copy the pressure variations in the sound waves. The microcontroller
requires digital signals, and so there must be a conversion between the two. The microcontroller input
carries this out in a subsystem called the ADC (analogue-to-digital converter).

 Page 5

1.3.1 The AD7680 ADC

In the Matrix dsPIC solution, the DSP Input board includes an AD7680 ADC, which:

• is a successive approximation ADC, aiming to provide rapid conversion from analogue to
digital. To begin with, the most significant bit of the digital output is set to logic 1. This is
converted into the equivalent analogue voltage, which is then compared to the signal voltage.

• If it is bigger, then it is reset to logic 0.
• If it is smaller, then it remains at logic 1, and the next bit is set to logic 1.
• This continues until the digital equivalent voltage is as close to, but greater than, the

analogue signal as possible.

• has a 16-bit output, meaning that every sample is converted into a sixteen bit binary digit,
allowing 216 (65536) different results. For example, with a voltage range from 0V to 5V, each
sample is accurate to 76 V.

• is capable of taking up to 100,000 samples per second, allowing it to sample signal
frequencies up to 50kHz, i.e. well beyond the audio frequency range.

• has a 'sample-and-hold' output, which is slightly different to the sampling diagram shown
earlier. The output voltage is held at the value of one sample until the next sample is taken.

• has internal control circuitry that converts the 16-bit parallel data into serial form, suitable for
outputting via the SPI data output connection.

 Page 6

1.4 Digital to Analogue Conversion:

Once the microcontroller has performed its digital processing on the signal, it may be necessary to
convert it back to analogue form. This is done by a digital-to-analogue converter (DAC).

It aims to produce an analogue voltage which reflects the size of the input digital signal.
The following table illustrates this idea:

Important characteristics for these devices include:

• Resolution:
the number of possible output voltage levels that it can produce.
For example, an 8-bit DAC has 256 (2 to the power 8) output voltage levels.

• Maximum sampling rate:
depends on the maximum speed at which the circuit can operate stably.
When used in conjunction with an ADC, this can determine the signal frequency range which
the system can handle effectively.

• Monotonicity:
means that the output voltage always increases when the input digital signal increases.

• Dynamic range:
the difference between the largest and smallest signals that can be used with the DAC.

Digital input Analogue output

0000 0V

0001 0.1V

0010 0.2V

0011 0.3V

0100 0.4V

0101 0.5V

0110 0.6V

0111 0.7V

 Page 7

1.4.1 The AD5662 DAC

In the Matrix dsPIC solution, the DAC function is carried out by a AD5662 chip, found on the 'DSP
Output' board, (EB086).

The AD5662 :

• is a 'string' DAC.
 The following circuit diagram shows the principle for a 2-bit DAC.

 The string of four resistors (for a 2-bit DAC,) divides the voltage VS into four equal chunks.
The 2-to-4 decoder uses the digital input to activate one of the outputs labelled W to Z. This
in turn operates one of the four electronic switches. As a result, the analogue output voltage
is selected by the digital input to be 0V, VS/4, VS/2 or 3VS/4.

• is a 16-bit DAC, meaning that it can cope with digital inputs up to sixteen bits long (giving it
216 = 65,536 different values) . The output analogue voltage has a range from 0V to the
positive supply voltage used, VS. Put simply, if used with a reference voltage of 5V, the
analogue output will increase in steps of roughly 76 V, as the digital input number increases.

• has a settling time of 10ms, meaning that it takes only 10 milliseconds (0.01s) to adjust the
analogue output voltage after the input digital signal changes.

 Page 8

1.4.2 The E-blocks DSP Hardware

The Matrix TSL E-block and E-blocks2 processor and DSP boards allow the exploration of DSP (Digital
Signal Processing) digitally sampled analogue waveforms such as audio or feedback control signals. The
DSP ADC input board converts analogue signals to digital for processing and subsequent output to the
DSP DAC output board. The digital information is passed between the boards using a Serial Peripheral
Interface (SPI).

The E-blocks Analog to Digital (ADC) and Digital to Analog (DAC) boards are pictured below:

(BL0032)

Processor

SPI

DAC (EB086)

SPI -> DAC -> Analogue Out

ADC (EB085)

Analogue In -> ADC -> SPI

EB085 ADC Board

The ADC board features an on-board

microphone together with a mono jack for

the input of line audio signals at consumer

audio levels (−10 dBV 0.316 Vrms). A

clipping LED provides indication of signal

levels above nominal. The board provides

multiple adjustable amplifier stages, a high

speed 16-bit analogue to digital converter

(ADC), a configurable low pass filter circuit

and oscilloscope test points to monitor the

signals at various points in the input chain.

EB086 DAC Board

The DAC board features a high speed 16-bit

digital to analogue converter (DAC), multiple

adjustable amplifier stages, a configurable

low pass filter circuit and multiple

oscilloscope test points for the monitoring of

the signal at various stages in the output

chain. A clipping LED provides indication of

signal levels above nominal. It has an on-

board speaker and mono line output jack

socket.

 Page 9

Note: Connect a wire from +V terminal to +V on the processor board to power the EB085 at the same
voltage. Select SPI setting A or B to match the available SPI connections of the processer board port and
set the SPI component connection properties to match the table.

Note: Connect a wire from +V terminal to +V on the processor board to power the EB086 at the same
voltage. Select SPI setting A or B to match the available SPI connections of the processer board port and
set the SPI component connection properties to match the table.

EB085 ADC Board

The board has controls and selection jumpers for:

• Microphone or jack selection jumper

• Gain control potentiometer

• Low pass filter selection jumper

• Variable filter control potentiometer

• SPI configuration jumpers (see table opposite)

EB086 DAC Board

The board has controls and selection jumpers for:

• Speaker or line output selection jumper

• Volume control potentiometer

• Low pass filter selection jumper

• Variable filter control potentiometer

• SPI configuration jumpers (see table opposite)

 Page 10

1.4.3 What is SPI?

The dsPIC offers multiple communication scenarios, use of Serial Peripheral Interface (SPI) and Inter-
Integrated Circuit (I2C) protocols, and use of Universal Asynchronous Receiver/Transmitter (UART).
Each has its advantages and disadvantages. In the exercises in this module, only the SPI interface is
used.

The SPI protocol offers communication between elements of the DSP system, which is:

• full-duplex (two-way and simultaneous)
• synchronous (controlled by shared clock pulse, created by the master device)
• serial (uses a single data wire pair)
• a master / slave protocol. (The master device controls the clock signal, and this controls the

slave devices).

It is intended for short-range communication, between memory, drivers and sensor subsystems located
on the same printed circuit board, for example.

It uses signals carried down either three or four wires. These signals are:

• SS - Slave Select.
• indicates to a slave that the master wishes to exchange data with that slave device;
• when low, the slave device listens for SPI clock and data signals;

• optional - not present in the three signal option.
• SCLK - Serial Clock signal.

• generated by the master device;
• controls when data is sent and read.

• MOSI - Master Output, Slave Input
• transfers data from the master device to the slave;
• uses SDO1 (pin 25) in these exercises.

• MISO : Master Input, Slave Output
• transfers data to the master device from the slave;
• uses SDI1 (pin 26) in these exercises.

 Page 11

SPI is a protocol concerned with data exchange, controlled by the clock line, SCLK, which, in turn, is
under the control of the master device. Data is synchronised with the clock signal, so that typically, it
changes only during the falling edges of the clock pulse. It is read only on the rising edges.

To begin data transfer, the master creates a clock signal at a frequency that the slave device can
handle. It then chooses the slave device using the Slave Select line. Since SPI transmits its clock signal
between devices, to synchronise the data exchange, the clock frequency can vary without disrupting the
data transfer. The data rate simply changes along with the changes in the clock rate. With asynchronous
communication protocols, like RS232, this is not possible.

In SPI, no device is just a 'transmitter' or just a 'receiver'. Each device has two data lines, one to input
data and one to output it. During each clock cycle, full-duplex communication takes place, i.e. the
master sends the slave one bit (usually the most-significant bit of the eight-bit data frame) on the MOSI
line, and receives one bit from the slave, on the MISO line. A program should always read incoming
data after a transfer has taken place, even if it is not used in the program, otherwise the SPI module
may become disabled. To terminate the transmission, the master stops sending further clock pulses.

1.4.4 Three Wire SPI:

Three wire SPI is used:
• within the ADC on the DSP Input board, where the master receives data from the slave device,

but does not send data back to it;

• within the DAC on the DSP Output board, where the master sends data to the slave device, but
does not read data back from it.

No Slave Select pin is needed in the exercises as the dsPIC uses pins 29 and 30 (Port F bit 1 and bit 0),
to activate the DAC and ADC respectively.

1.4.5 Four Wire SPI:

Four wire SPI allows the master to select the slave device, and then enables the master to both send
data to the slave device and receive data back from it. A single SPI operation simultaneously transfers a
byte of data from the master to the slave via the MOSI signal and also a byte of data from the slave to
the master via the MISO signal.

 Page 12

2. Digital Signal Processing

Digital signal processing (DSP) is used for a range of activities, many replacing, and improving on
functions that previously used analogue processing.

This processing. usually happens 'in real time', i.e. as the signals occur, with no time to store signals in
memory while processing takes place. Sampling audio signals, at a sample rate of 44.1kHz, allows only
22.7 micro seconds between samples. In this time, the processor must complete the sampling, process
the data, and output the result. Latency (delay while processing takes place,) must be kept to an
absolute minimum. This places particular demands on the hardware used in this processing - DSP
processors are built for speed!

Generally, DSP also delivers more precision. For example, once digitised, a signal can be amplified by a
factor of 5 simply by multiplying all its components by 5!

2.1 The dsPIC microcontroller

The dsPIC microcontroller, sometimes called a digital signal controller (DSC), is designed to carry out
digital signal processing in portable embedded systems, such as mobile phones. It developed from the
'normal' microcontroller, and retains many of its features. However, its architecture means that it can
operate with very little time lag.

2.1.1 What is a microcontroller?

A microprocessor:

• is a single-chip integrated circuit;

• is designed to perform arithmetic and logic operations on binary data;

• is controlled by a program stored in memory.

Its operations are synchronised by a 'clock' (astable circuit), which may be incorporated into the
microprocessor integrated circuit, or may be a peripheral subsystem. As technology has advanced, the
'speed' of this clock (astable frequency) has increased, allowing the microprocessor to carry out tasks
more quickly.

A typical microprocessor system consists of the microprocessor 'chip', memory 'chips', input / output
'ports', designed to take in digital signals from the outside world, and later output the results of the
processing as a digital signal, back to the outside world.

A microcontroller:

• aims to be a compact, program-driven, power-efficient device for controlling electrical and
electro-mechanical systems, like television remote controls, microwave ovens, robot arms etc.

• developed as a compact version of this system, as a microprocessor which has a clock, a
limited amount of memory, and input / output ports, all incorporated into a single chip.

• does not need vast processing speed, as mechanical devices tend to move in time spans of
seconds rather than nanoseconds. (Many programs have to insert delays to calm down the
response of the microcontroller.)

• does need enhanced input / output capabilities, and the ability to interface and communicate
with a wide range of hardware.

2.1.2 Differences between dsPIC and PIC

The distinction between the two has almost gone, and for some processors it is difficult to categorise
them in this way. They share many common features.

Microcontrollers are designed to carry out basic mathematical operations on data received from a
range of input sensors in order to control a range of output devices. They use the information from
sensors, the controlling program and the interrupt subsystem to control output electrical and electro-
mechanical devices.

 Page 13

Traditionally, although their computational power was limited (CPUs operated on eight bits of data
initially), their strength lay in the wide range of peripheral units available on-chip.

The tasks they are designed for involve moving, sorting and testing data which is stored in memory, and
then outputting the result.

Digital signal processors are designed to stream digital signals, keeping latency (delay) to an
absolute minimum, and processing the data in a predictable execution time.

To do this, at the high speed required, they often rely on features like pipelined architecture:

Pipelining allows sections of the processor to execute different parts of the instruction at the same time.
As a result, more instructions can be executed in a given time.

An analogy - a production line in a factory:

The production line involves three tasks carried out on the items that pass along it. These are labelled
'A', 'B' and 'C' in the diagrams below.

Here are two strategies for running the production line:

• Send one item at a time through the production process at a time, completing all three tasks
on that item before sending in the next.

• Feed a second item into the production line as soon as the task 'A' is completed on the first
item. Then a third enters as the first and second move on.

The first strategy means that the resources of the production line, the workers, are idle for much of the
time.

The second is much more efficient, increasing throughput by 300% once fully loaded, (but possibly tiring
out the 'resources' in the process).

A problem - Suppose that task 'B' takes twice as long as 'A' or 'C'. Stage 'C' cannot start until 'B' is
 finished, and so time is wasted. In computing terminology, a 'stall' is created.

The production line is modified by having two sections working on task 'B', in parallel. After task 'A', the
first item is passed on as usual. The second item is passed to the 'parallel' section after task 'A' is
completed. In this way, there is no delay to task 'C'. The stall is resolved, as shown in the next diagram.

Second strategy -
Feed in more items as each task
is completed.

First strategy -
Complete one item at a time.

The production line -
There are three tasks, labelled 'A', 'B' and 'C'.

Each is carried out by a different section of the production line.

 Page 14

2.1.3 Dynamic pipelining

Dynamic pipelines have the flexibility to schedule processing in a way that copes with stalls.

In general, executing instructions involves the following five steps:

• fetching the instruction from memory;

• decoding the instruction;

• accessing any data needed from memory;

• processing the instruction;

• storing the result in a register.

A dynamic pipeline is divided into three sections:

• the instruction 'fetch and decode' unit;

• a number of 'functional' units, each of which has a 'reservation station', in
effect a buffer, to store the instruction and data;

• a commit unit, which writes the result to a specified register at the
appropriate time.

 Of these, the instruction fetch/decode unit task happens first. Similarly, the commit unit task
executes last. The functional units operate in any order within this plan. If a stall occurs, the
processor can schedule other instructions to be executed until the stall is resolved.

2.1.4 Other DSP features

• hardware multipliers:

 Doing it in software would be too slow! Most modern processors now operate with 16-bit
precision, (i.e. process 16-bit numbers). When multiplying one 16-bit number by another,
the result can have 32 bits. The processor must be able to store these huge numbers.

• accumulators:

 are used to store these long numbers produced by multiplication. Typically, in a 16-bit
system, the accumulator will store up to 40-bit numbers, allowing a number of 'guard bits'
for use in further operations like addition. Usually, it uses saturation logic.

• MAC hardware:

 In many DSP operations, the result is found by repeated 'multiply then add' stages.
 In a digital filter, for example, the output is found by a calculation of the form:

 meaning that the value of 'y' is found by multiplying the current value of 'x' by 'a', and
then adding it to all the previous values of 'a x x'.

 Page 15

 This process is represented in the following diagram:

 This could be done slowly in software, or extremely quickly using a MAC (Multiply -
ACcumulate unit) in hardware.

• dual data fetch:

 The processor must fetch two data items ('a' and 'x' in the example above,) before it can
carry out the MAC instruction. This is made easier if the data memory is divided into two
discrete areas, one for each of the data items. The architecture of the CPU allows it to
access both items within the same clock pulse, speeding up the process.

• saturation logic:

For a given data bus or register width, there is a maximum number that can be stored,
(when all bits are set to logic 1). In normal processing, 'wrap-around' takes place, when that
maximum value is exceeded, and this usually results in a totally incorrect value.

For example, if only four bits can be stored by the CPU, then adding 1 (00012) to 15 (11112)
causes an error.

 The answer appears to be '0000' as the carry forward is lost. In other words, adding '12' to
the maximum value (11112) generates the minimum value (00002).

 With saturation logic, when the result of an operation, such as addition or multiplication, is
greater than the maximum number possible, it is set ("clamped") to the maximum. Similarly,
if it is below the minimum possible, it is clamped to the minimum. In the example above, it
clamps the value at '11112'.

• barrel shifters:

 It is usually necessary to scale ('normalise') data entering or leaving the MAC unit.

 When a binary number is shifted one place to the left in a register, it is effectively multiplied
by two. Shifting it one place to the right divides it by two. This operation can be carried out
in conventional microcontrollers, but only one place left or right at a time.

 To shift a number 'n' places would require 'n' clock cycles, and hence be a slow process. A
barrel shifter can shift data by a specified number of bits in a single clock cycle.

• circular buffers:

 A circular buffer is an area of memory used to store incoming data, such as the latest sample
from the ADC. The size of the buffer is fixed and it uses the FIFO (first-in-first-out) principle
once the buffer is full - as new data arrives, the oldest data is over-written. It is designed to
perform as quickly as possible, using as few clock cycles as possible, in other words.

http://en.wikipedia.org/wiki/Bit

 Page 16

 In a conventional (linear) buffer, when more data is added, the existing data is shuffled
along.

 Picture a line of people on chairs in the doctor's waiting room - as the one at the front of the
queue moves off to see the doctor, everyone else moves onto the next chair, and a new
arrival can sit on the end chair. Shifting data, in this way, from one location to the next in a
linear buffer, takes a lot of clock cycles (time).

 A circular buffer is not circular - it just behaves as if it were! Once data is added to the end
location in the buffer, the next data is added to the beginning, as the diagram shows.
Circular buffers operate by 'moving' a pointer through the data, not moving the data itself.

 They are controlled by four 'pointers' - memory locations that contain important addresses.
These store the addresses of:

• the first memory location in the buffer;

• the last memory location in the buffer;

• the 'step size' - added to a given buffer address to find the next address in the
circular buffer;

• the latest addition to the buffer.

 When new data is added or removed, the previous data is not shuffled into new locations in
memory. Instead only the contents of the 'latest' pointer are changed. The other pointers are
unaffected. All this can be accomplished with very little latency.

 The 'step size', also called 'stride', is not necessarily '1'. The buffer does not have to occupy
adjacent memory locations, but can be spread across an area of memory. If the data has
more bits than a single memory location can store, it is stored in more than one memory
location. This will be reflected in the contents of the 'step size' pointer. For example, if the
data requires two memory locations to store it, then the 'step size' will be two, in order to
take the processor to the next item of data.

 Page 17

• modulo addressing

When data is ready to be stored in a circular buffer, the 'latest' pointer is used to identify the
correct address location for it. Once that is stored, the address in that pointer is changed,
guided by the 'step size' pointer.

The system must perform 'boundary checks' to ensure that the address pointed to lies within
the circular buffer. This could be done by a software routine, but that would require clock
cycles, and hence take time. Instead, the changes to the 'latest' pointer and the checks are
done in hardware, using a subsystem called the Address Generator Unit (AGU) with no 'cost'
in execution time.

When the address generated lies above the highest location in the circular buffer, the
hardware produces an effective address at the lowest address in the buffer. Equally, where
the address generated lies below the lowest address used, it is redirected to the highest
address in the buffer. This is called 'modulo addressing'.

• bit-reversed addressing

Another addressing mode generated by the AGU, bit-reversed addressing does exactly that -
the least-significant bit of the number becomes the most-significant bit, and so on. This is
illustrated in the following table.

Memory location
address -

linear

Memory location
address -

bit-reversed

Decimal Binary Binary Decimal

0 0000 0000 0

1 0001 1000 8

2 0010 0100 4

3 0011 1100 12

4 0100 0010 2

5 0101 1010 10

6 0110 0110 6

7 0111 1110 14

8 1000 0001 1

9 1001 1001 9

10 1010 0101 5

11 1011 1101 13

12 1100 0011 3

13 1101 1011 11

14 1110 0111 7

15 1111 1111 15

This can be used to manage the addresses inside a circular buffer.

 Page 18

It is also used within Fourier transformations, which allow signals to be viewed as both time-
varying and frequency-varying quantities (i.e. in voltage/time graphs and voltage/frequency
graphs.)

As part of the Fourier transformation, a signal with, for example sixteen samples, is
'decomposed' into sixteen signals, each having one sample. This process is illustrated in the
next diagram.

The samples are stored in sequence in memory, and then a bit-reversal algorithm is used to
access them in the required order. (Compare the numbers of the samples with the final
column in the previous table.)

• direct memory access (DMA)

 Another time-saving measure, direct memory access allows hardware subsystems to access
the system memory independently of the main processor.

 Input/output operations can take up a lot of time. Instead of carrying out such tasks itself,
the CPU can control a separate DMA controller to accomplish data transfer. While this is
taking place, the CPU is free to perform other tasks.

 Page 19

3 Program 1 - Laying the foundations

3.1 Introduction

This exercise looks at the basis of all digital audio technology - inputting an audio signal into the
microcontroller system, and creating an audio output after the digital processing.

3.2 Objective

To input a signal from a microphone into the microcontroller system, and output an identical sound
generated to a loudspeaker or earpiece.

3.3 Requirements

This exercise requires:

• a dsPIC programmer with a microcontroller device

• a copy of Flowcode running on the PC

• a DSP Input E-Block (EB085)

• a DSP Output E-Block (EB086)

• a graphical LCD E-Block (BL0157)

• a universal power supply

• a high impedance microphone and earpiece.

3.4 Flowcode program outline

The aim of the program is to:

• initialise:

• the DSP system;

• the graphical LCD;

• the SPI (Serial Peripheral Interface) component.

• sample the audio input;

• convert it to a digital signal, using the ADC;

• process it with the dsPIC (i.e. transfer it to the output buffer and hence via the DAC to the
speaker on the DSP output board, or to the earpiece;

• display the name of the program "1. DSP Through" on the gLCD.

3.5 The system components

The flowchart controls five components:

• the DSP System component, called 'DSPSystem1';

• the Input component, called 'DSPInput1';

• the Output component, called 'DSPOutput1';

• the SPI component;

• the graphical LCD component.

 Page 20

3.5.1 The DSP System component

The DSP System component manages the buffers used by the system.

Each link between components needs a buffer, a number store, to hold data, transmitted from one
component to the next. The data is stored in the buffer as a series of binary numbers, here either 8-bits
or 16-bits in length. (The buffer depth can be set when the DSP System component is configured.) The
location of the data waiting to be processed next is indicated by the 'buffer pointer'.

Each time that the on-board timer 'overflows' (reaches its maximum count,) it sends out a 'tick', (brief
trigger pulse), which can be used to increment the buffer pointer, to move from one stored value to the
next. The size of each buffer dictates the number of 'ticks' needed to reach the end of that buffer.
Knowing the 'tick' rate and the size of the buffer allows us to calculate the delay caused in reading the
complete buffer.

3.5.2 The DSP Input component

The DSP Input component controls the buffer called 'AudioSignal'. Each sample from the ADC is stored
in this buffer ready for processing by the dsPIC program.

3.5.3 The DSP Output component

After processing, the result is stored in the buffer controlled by the DSP Output component, and can be
transferred from there to the DSP Output E-Block.

3.5.4 The ADC / DAC components

The ADC/DAC components control the 'conversations' between the SPI master (the microcontroller) and
the SPI slave peripherals (here, the DSP Input and DSP Output E-block boards).

It specifies:

• the connections to the microcontroller;

• the frequency and other clock properties;

• whether SPI communication is carried out using hardware or software.

The software option means that the communication is controlled by part of the program. This may be
desirable when additional communication channels are needed, or the SPI hardware pin is in use for a
different purpose.

Both slave devices use the three wire version of SPI, as they only either read or write. The master uses
the four wire version to allow it to select which of these to talk to. The 'Data Out' pin doesn’t go to the
ADC and the 'Data In' pin doesn’t go to the DAC!

3.5.5 The graphical LCD component

The graphical LCD component controls the properties of the attached LCD E-Blocks board (BL0157).
These include:

• the connections to the microcontroller;

• the display properties - colours used for foreground and background, colour intensity etc.

http://www.matrixtsl.com/wiki/index.php?title=Component:_ID_917f243e_4102_4bee_9998_81f18bc6ca9d

 Page 21

3.6 Creating the program

Write the Flowcode program using the following steps as a guide:

• create a new Flowcode flowchart;

• select the 16-Bit PIC -> Misc -> BL0032 as a target;

3.6.1 The Dashboard panel:

• add a DSP System component to the Dashboard panel, (from the DSP toolbox);

• configure it as follows:

• Handle DSPSystem1
• Buffer count 1;
• Simple mode Yes;

(Simple mode configures all buffers to the same bit depth, 8-bit or 16-bit,
 and to the same type, signed or unsigned.)

• Buffer A name AudioSignal;

• Bit depth 16-bit;
• Sign Unsigned;
• Size 1.

• add DSP Input component to the Dashboard panel, (from the DSP toolbox);

• configure it as follows:

• Handle DSPInput1
• Buffer manager DSPSystem1;

• Input AudioSignal.

• add DSP Output component to the Dashboard panel, (from the DSP toolbox);

• configure it as follows:

• Handle DSPOutput1
• Buffer manager DSPSystem1;
• Output AudioSignal.

• add DSP Audio Input & DSP Audio Output components to the Dashboard panel, (from the
Hardware toolbox);

• add a gLCD component to the dashboard panel, (from the Displays toolbox,)

 Page 22

3.6.2 The flowchart:

 Create the Flowcode flowchart shown in the following diagrams.

 It consists of a 'Main' flowchart, and five macros.

• Save the program as 'Exercise 1'.

• The program can be simulated by moving the slider on the EB085 ADC component using the
mouse. The EB086 DAC component slider should move to match the position of the EB085
ADC slider.

Main GLCD_Init SPI_Init

Timer Tick

 Page 23

3.6.3 The hardware:

• Connect the gLCD E-Blocks board, BL0157, to Port B.0

• Connect the DSP Input E-Blocks board, EB085, to one of the connectors on the dual E-Blocks
IDC cables, plugged into Port F/C. Provide power by connecting the '+V' screw terminal to
the '+V' screw terminal on the Upstream board.

• Configure the jumpers as follows:

• Patch system jumper - B position;

• Low-pass filter selection jumper - 3.4kHz

• Line in voltage bias jumper - on

• Microphone / jack input selection jumper - jack.

• Connect the DSP Output E-Blocks board, EB086, to the other connector on the dual E-Blocks
IDC cables, plugged into Port F/C. Provide power by connecting the '+V' screw terminal to
the '+V' screw terminal on the Upstream board.

• Configure the jumpers as follows:

• Patch system jumper - B position;

• Low-pass filter selection jumper - 3.4kHz;

• Speaker / Line out selection jumper - 'Line out' for earpiece, or 'Speaker' for
on-board loudspeaker;

• PWM / DAC input selection jumper - DAC.

• Connect the BL0032 Upstream board to the PC with a USB cable using the GHOST socket.

• Connect the universal power supply, HP2666, to the Upstream board.

• Next, compile the program 'Exercise 1' and transfer it to the dsPIC chip by using the compile
to chip button on the main toolbar in Flowcode.

 Page 24

3.6.4 Testing:

• Plug a high impedance microphone into the 'Line in' input jack socket on the DSP Input
board.

• Plug an earphone into the 'DSP Output' jack socket on the DSP Output board.

• Any sounds picked up by the microphone should be relayed to the earphone.

• Disconnect the USB lead from the computer to confirm that the program is contained in, and
running exclusively from the dsPIC.

3.6.5 The Flowcode program in detail

The task of the dsPIC microcontroller is straightforward. It transfers the digital signal received from the
ADC to the DAC on the DSP Output board.

The next section goes into detail about the function of each section of the program.

Main:

• macro 'GLCD_Init' is called to initialise the gLCD component;

• macro 'SPI_Init', is called to initialise the SPI component;

• a component macro is used to initialise the DSP component;

• an interrupt is set up so that when Timer 1 overflows (reaches its maximum count,) it calls
the 'timer_tick' macro;

• an empty infinite loop keeps the program active, without doing anything, so that these Timer
1 interrupts keep occurring.

GLCD_Init - sets up the graphical LCD to display the message "1. DSP Through":

• component macro 'Initialise' is called to initialise the gLCD component;

• component macro 'SetDisplayOrientation' sets the display orientation on the LCD screen;

• the 'Print' component macro is called to set the display properties, and create the message to
be displayed on the LCD.

timer_tick - is triggered when Timer 1 overflows, and creates a new 'tick' to move the process onto the
next sample from the ADC:

• macro 'Sample ADC' is called to transfer the latest sample to the variable 'Data';

• component macro 'AddRawTick' adds this sample to the DSP Input buffer;

• the result of the processing, now stored in the DSP output buffer, is transferred to the 'Data'
variable by the component macro 'ReadRawTick';

• the 'Output DAC' macro is called to transfer this value to the DAC;

• the 'TickAllBuffers' component macro now moves onto the next sample taken from the ADC.

SPI_Init - enables the SPI hardware peripheral to control data transfer between the ADC, microcontroller
and DAC:

• the two Output icons disable the two SPI slave devices, the DSP Input and DSP Output
boards, by sending logic 1 to their Slave Select pins, F0 and F1 ;

• component macro 'Initialise' then activates the SPI hardware peripheral in readiness for
transferring data.

Sample ADC - transfers the next ADC sample to the microcontroller:

• the Output icon activates the ADC by sending logic 0 to its Slave Select pin, F0;

• three 'GetChar' component macros then transfer data from the ADC, via the SPI bus, to local
variables '.upper', '.mid' and '.lower'.

 (Using local variables is more memory efficient. Once the macro has finished, the memory
used by these local variables is released for use elsewhere. Global variables, on the other
hand, occupy memory permanently while the program is running, and so should be used
sparingly.)

• the Output icon then disables the ADC by sending logic 1 to its Slave Select pin, F0;

 Page 25

• SPI data is always 8-bits long, whereas the sample coming from the ADC (and later sent to
the DAC) is sixteen bits long. The Calculation icon takes three 8-bit samples from the SPI bus
and converts it into standard signed 16-bit format. The 'spare' byte provides extra clock
signals required by the slave devices.

 The following diagram illustrates the steps involved in this calculation. It assumes typical

 initial values for the local variables, '.upper', '.mid', '.lower' and '.Return', ('X' = 'don't care').

Output DAC - transfers the processed sample from the microcontroller to the DAC:

• the Calculation icon chops up the '.value' unsigned integer (16-bits long) into two local byte
variables, '.upper' and '.lower', ready for transfer via the SPI bus;

• the Output icon activates the DAC by sending logic 0 to its Slave Select pin, F1;

• the two byte variables are then sent via SPI to the DAC on the DSP Output board;

• the Output icon then disables the ADC by sending logic 1 to its Slave Select pin, F0.

3.7 Further work

• Adjust the 'Gain' controls on the DSP Input and DSP Output boards. Notice the difference in
the sound produced in the earphone.

• Test the 'Volume control on the DSP Output board.

• Test the effect on the sound heard of changing the low pass filter settings.

• Modify the program so that the graphical LCD displays the message "Program 1" in double
width and double height characters.

 Page 26

4 Program 2 - Adding an echo

4.1 Introduction

The example demonstrates a simple DSP audio through system
where data is taken in using the input E-block and output using
the output E-block. A delayed version of the input is added to
the input and applied to the output to create an echo effect.

4.2 Objective

To input a signal from a microphone into the microcontroller system, and generate an identical sound,
with added echo, from its output.

4.3 Requirements

This exercise requires:
• a dsPIC programmer with a microcontroller device.

• a copy of Flowcode running on the PC

• a DSP Input E-Block (EB085)

• a DSP Output E-Block (EB086)

• a graphical LCD E-Block (BL0157)

• a high impedance microphone and earpiece

• a universal power supply.

4.4 Flowcode program outline

The aim of the program is to:

• initialise:

• the DSP system;

• the graphical LCD;

• the SPI DAC and ADC.

• sample the audio input;

• convert it to a digital signal, using the ADC;

• process it with the dsPIC

• scale it, to avoid 'overflows' during summation;

• sum it with a delayed version of itself;

• transfer the result to the output buffer.

• transfer the result to the DAC, and then pass the audio signal produced to the speaker on the

DSP output board;

• display the name of the program "2. DSP Echo" on the gLCD.

 Page 27

4.5 The system components

The flowchart controls eight components:

• the DSP System component, called 'DSPSystem1';

• the Input component, called 'DSPInput1';

• the Output component, called 'DSPOutput1';

• the Scale component, called 'DSPScale1';

• the Sum component, called 'DSPSum1';

• the Delay component, called 'DSPDelay1';

• the ADC and DAC components;

• the graphical LCD component.

Five of these were described in Program 1. The new ones are described below.

4.5.1 The DSP Scale component

The DSP Scale component allows the program to change the number stored in a buffer, by either adding
or subtracting a value to it, or by dividing or multiplying it by a number.

The simplest way to multiply or divide is to shift the number to the left (multiply) or the right (divide).
Shifting by one place causes multiplication/division by two, two places by four, three by eight etc.

The diagram below illustrates the effect of shifting the binary number 0001 0110 to the left and to the
right by one place.

In this program, it is used with the 'RightShiftTick' macro, given a parameter of '1', to divide the latest
sample in the 'AudioSignal' buffer by two, and store the result in the 'AudioScaled' buffer.

4.5.2 The DSP Sum component

The DSP Sum component combines together the contents of two buffers into one buffer. There are a
variety of options for how this is done. The combination can be the sum, the average, the difference,
the greater of, or smaller of the individual buffers, for example.

In this case, it uses the 'AddTick' macro to sum the contents of the 'AudioScaled' and 'AudioDelayed'
buffers, storing the result in the 'AudioDelayed' buffer.

4.5.3 The DSP Delay component

The DSP Delay component allows a delay to be inserted before a signal takes effect. The delay involves
moving the sample to a later position. The delay is measured as the number of samples involved in this
change of position.

 Page 28

4.6 Creating the program

Write the Flowcode program using the following steps as a guide:

• create a new Flowcode flowchart;

• select the 16-Bit PIC -> Misc -> BL0032 as a target;

4.6.1 The Dashboard panel:

• add a DSP System component to the Dashboard panel, (from the DSP toolbox);

• configure it as follows:

• Handle DSPSystem1;
• Buffer count 4;

• Simple mode Yes;
• Buffer A name AudioSignal;
• Buffer B name AudioScaled;
• Buffer C name AudioDelayed;
• Buffer D name AudioSum;
• Bit depth 16-bit;
• Sign Unsigned;
• Size 1.

• add DSP Input component to the Dashboard panel, (from the DSP toolbox);

• configure it as follows:

• Handle DSPInput1;
• Buffer manager DSPSystem1;
• Input AudioSignal.

• add DSP Output component to the Dashboard panel, (from the DSP toolbox);

• configure it as follows:

• Handle DSPOutput1;
• Buffer manager DSPSystem1;
• Output AudioSum.

• add DSP Scale component to the Dashboard panel, (from the DSP toolbox);

• configure it as follows:

• Handle DSPScale1;
• Buffer manager DSPSystem1;
• Input AudioSignal;
• Output AudioScaled.

• add DSP Sum component to the Dashboard panel, (from the DSP toolbox);

• configure it as follows:

• Handle DSPSum1;
• Buffer manager DSPSystem1;
• Input A AudioScaled;
• Input B AudioDelayed;
• Output AudioSum.

 Page 29

• add DSP Delay component to the Dashboard panel, (from the DSP toolbox);

• configure it as follows:

• Handle DSPDelay1;
• Max Delay Count 8000;
• Initial Delay Count 4000
• Buffer manager DSPSystem1;

• Input AudioScaled;
• Output AudioDelayed;
• Sample rate 8000.000000.

• add DSP Audio Input & DSP Audio Output components to the Dashboard panel, (from the
Hardware toolbox);

• add a gLCD component to the dashboard panel, (from the Displays toolbox,)

 Page 30

4.6.2 The flowchart:

 Create the Flowcode flowchart shown in the following diagrams.

 It consists of a 'Main' flowchart, and five macros.

 Some of these macros are identical to those in program 1, and may be imported from there.

 The 'GLCD_Init' macro has only a minor change from that used in program 1 - the text printed on
the gLCD is different.

 The 'timer_tick' macro has additional component macros, to take care of the scaling, echo
production and summation.

• Save the program as 'Exercise 2'.

Main

GLCD_Init

timer_tick

 Page 31

4.6.3 The hardware:

• Connect the hardware as described in exercise 1.

• Next, compile the program 'Exercise 2' and transfer it to the dsPIC chip.

4.6.4 Testing:

• Plug a high impedance microphone into the 'Line in' input jack socket on the DSP Input
board.

• Plug an earphone into the 'DSP Output' jack socket on the DSP Output board.

• Any sounds picked up by the microphone should be relayed to the earphone, but this time
with an added echo.

• The echo effect will be more apparent if you make short 'clicking' sounds into the
microphone.

• Changing the delay in the DSP Delay component will allow for different echo delays.

 Page 32

4.6.5 The Flowcode program in detail

The task is:

• to take in a sample from the ADC on the DSP Input board;

• divide it by two, to prevent excessive values when the summation takes place;

• produce a delayed version of it;

• add together the original (scaled) sample and its delayed equivalent;

• output the result from the dsPIC to the DAC on the DSP Output board;

• send the DAC output to the speaker on the DSP Output board.

The next section goes into detail about the function of each section of the program, though much of this
is the same as in program 1.

Main macro:
• has the same function as in program 1.

GLCD_Init:
• sets up the graphical LCD to display the message "2. DSP Echo":

timer_tick:

• is triggered when Timer 1 overflows, and creates a new 'tick' to move the process onto the
next sample from the ADC:

• macro 'Sample ADC' is called to transfer the latest sample to the variable 'Data';

• component macro 'AddRawTick' adds this sample to the DSP Input buffer, without scaling it
in any way;

• component macro 'RightShiftTick' moves all bits of the sample one place to the right in the
buffer, effectively dividing the value by two;

• component macro 'DelayTick' takes a copy of this sample, and adds a time delay, measured
as the number of samples by which it is delayed;

• component macro 'AddTick' sums together the original sample and its delayed version;

• the result of the processing, stored in the DSP output buffer, is transferred to the 'Data'
variable by the component macro 'ReadRawTick';

• the 'Output DAC' macro is called to transfer this value to the DAC;

• the 'TickAllBuffers' component macro now moves onto the next sample taken from the ADC.

SPI_Init:
• enables SPI peripheral to control data transfer between the ADC, microcontroller and DAC, as

in program 1.

4.7 Further work

• Familiarise yourself with the controls on the DSP Input and DSP Output boards again:

• Adjust the 'Gain' controls. Notice the effect on the sound produced.

• Test the 'Volume control on the DSP Output board.

• Changing the low pass filter settings, and observe the effect on the sound heard.

• Change the delay settings - 'Max Delay Count' and 'Initial Delay Count', on the DSP Delay
component and notice the effect on the sound heard.

• Observe the effect of changing the 'Scaler' parameter in the 'RightShiftTick' macro.

 Page 33

5 Program 3 - Reverberation

5.1 Introduction

The example demonstrates the common technique of adding reverberation, repeated echoes with very
short delays, to a signal. This is often done to increase the realism of the sound produced. Without it,
sounds produced from digital sources like computers would sound very unrealistic.

In nature, we hear not only the original sound, but a number of
echoes from reflecting surfaces around us. If we are out in the
open, where there are few reflectors, there is little reverberation.
Conversely, when we hear a sound with very little reverberation, our
brains' interpretation is that we are outside.

Timing is important. If the gap between the sound and its echo is
long enough, we hear it as just that - a sound followed by its echo.
If the time is quite short, our brains merge the sound and echo
together to give a feeling of being enclosed.

The longer the time between the echoes and the original signal, the further away our brain pictures the
reflector, and so the bigger the enclosure we appear to be in. In this way, a sound engineer can conjure
up the impression of being in a large auditorium, such as a cathedral, or in a bathroom or even a
wardrobe.

5.2 Objective

To input a signal from a microphone into the microcontroller system, and generate an identical sound,
with a number of added echoes, from its output.

5.3 Requirements

This exercise requires:

• a dsPIC programmer with a microcontroller device.

• a copy of Flowcode running on the PC

• a DSP Input E-Block (EB085)

• a DSP Output E-Block (EB086)

• a graphical LCD E-Block (BL0157)

• a high impedance microphone and earpiece

• a universal power supply.

5.4 Flowcode program outline

The aim of the program is to:

• initialise:

• the DSP system;

• the graphical LCD;

• the ADC and DAC components.

• sample the audio input;

• convert it to a digital signal, using the ADC;

• process it with the dsPIC

• scale the incoming sample to avoid 'overflows' during summation;

• delay and scale a sample taken from the output;

• sum these two samples;

• transfer the result to the output buffer.

• transfer the result to the DAC, and then pass the audio signal produced to the speaker on the
DSP output board;

• display the name of the program "3. DSP Reverb" on the gLCD.

 Page 34

5.5 The system components

The flowchart controls nine components:

• the DSP System component, called 'DSPSystem1';

• the Input component, called 'DSPInput1';

• the Output component, called 'DSPOutput1';

• the first Scale component, called 'DSPScale1', which scales the input sample;

• the second Scale component, called 'DSPScale2', which scales the output sample;

• the Delay component, called 'DSPDelay1';

• the Sum component, called 'DSPSum1';

• the SPI component;

• the graphical LCD component.

All of these have been used, and described earlier. The notes that follow describe their use in this
program.

5.5.1 The first DSP Scale component

It is used with the 'RightShiftTick' macro, given a parameter of '1', to divide the latest sample from the
ADC, in the 'AudioSignal' buffer, by two, and store the result in the 'AudioScaled' buffer.

5.5.2 The DSP Sum component

Here, it uses the 'AddTick' macro to sum the contents of the 'AudioScaled' and 'FeedbackDelayed'
buffers, storing the result in the 'AudioSum' buffer.

5.5.3 The DSP Delay component

The DSP Delay component adds a time delay to the signal, 'AudioSum', fed back from the output. The
bigger this time delay, the larger the apparent size of the enclosure containing the sound source. The
output of this component is stored in the 'AudioDelayed' buffer.

5.5.4 The second DSP Scale component

This is also used with the 'RightShiftTick' macro, and a parameter of '1', to divide a sample by two. In
this case, the sample is taken from the 'AudioDelayed' buffer, the delayed sample from the output of the
DSP Sum component. The result, 'FeedbackDelayed', is fed into one input of the DSP Sum component.

 Page 35

5.6 Creating the program

Write the Flowcode program using the following steps as a guide:

• create a new Flowcode flowchart;

• select the 16-Bit PIC -> Misc -> BL0032 as a target;

5.6.1 The Dashboard panel:

• add a DSP System component to the Dashboard panel;

• configure it as follows:

• Handle DSPSystem1;
• Buffer count 4;
• Simple mode Yes;
• Buffer A name AudioSignal;
• Buffer B name AudioScaled;
• Buffer C name AudioDelayed;
• Buffer D name AudioSum;
• Buffer E name FeedbackDelayed;
• Bit depth 16-bit;
• Sign Unsigned;
• Size 1.

• add DSP Input component to the Dashboard panel;

• configure it as follows:

• Handle DSPInput1;
• Buffer manager DSPSystem1;
• Input AudioSignal.

• add DSP Output component to the Dashboard panel;

• configure it as follows:

• Handle DSPOutput1;
• Buffer manager DSPSystem1;
• Output AudioSum.

• add the first DSP Scale component to the Dashboard panel;

• configure it as follows:

• Handle DSPScale1;
• Buffer manager DSPSystem1;
• Input AudioSignal;
• Output AudioScaled.

• add DSP Sum component to the Dashboard panel;

• configure it as follows:

• Handle DSPSum1;
• Buffer manager DSPSystem1;
• Input A AudioScaled;
• Input B FeedbackDelayed;
• Output AudioSum.

 Page 36

add DSP Delay component to the Dashboard panel;

• configure it as follows:

• Handle DSPDelay1;
• Max Delay Count 8000;
• Initial Delay Count 1000;
• Buffer manager DSPSystem1;
• Input AudioSum;
• Output AudioDelayed;
• Sample rate 8000.000000.

• add the second DSP Scale component to the Dashboard panel;

• configure it as follows:

• Handle DSPScale2;
• Buffer manager DSPSystem1;
• Input AudioDelayed;
• Output FeedbackDelayed.

• add DSP Audio Input & DSP Audio Output components to the Dashboard panel, (from the
Hardware toolbox);

• add a gLCD component to the dashboard panel, (from the Displays toolbox)

 Page 37

5.6.2 The flowchart:

 Create the Flowcode flowchart shown in the following diagrams.

 It consists of a 'Main' flowchart, and five macros.

 Four of these macros are identical to those in earlier programs and may be imported from there.

 The 'GLCD_Init' macro has only a minor change - the text printed on the gLCD is different.

 The 'timer_tick' macro has additional component macros, to take care of the scaling, feedback
and summation.

• Save the program as 'Exercise 3'.

• Once again, it will not simulate easily, as it requires samples from the ADC on the DSP Input
board.

GLCD_Init
timer_tick

 Page 38

5.6.3 The hardware:

The hardware set-up is identical to that used in the previous program:

5.6.4 Testing:

• Plug a high impedance microphone into the 'Line in' jack socket on the DSP Input board.
• Plug an earphone into the 'DSP Output' jack socket on the DSP Output board.

• Any sounds picked up by the microphone should be relayed to the earphone, but this time
with reverberation.

• The reverberation will be more apparent if you make short 'clicking' sounds into the
microphone.

• Changing the delay in the DSP Delay component will allow for different reverb effects.

5.6.5 The Flowcode program in detail

The task is:

• to take in a sample from the ADC on the DSP Input board;

• divide it by two, to prevent excessive values when the summation takes place;
• add it to a delayed and scaled sample fed back from the output of the DSP Sum component;
• output the result from the dsPIC to the DAC on the DSP Output board;
• send the DAC output to the speaker on the DSP Output board.

The next section goes into detail about the function of each section of the program, though much of this
is the same as in earlier programs.
Main macro:

• has the same function as in previous programs.

GLCD_Init:
• sets up the graphical LCD to display the message "3. DSP Reverb":

timer_tick:
• is triggered when Timer 1 overflows, and creates a new 'tick' to move the process onto the

next sample from the ADC:
• macro 'Sample ADC' is called to transfer the latest sample to the variable 'Data';
• component macro 'AddRawTick' adds this sample to the DSP Input buffer, without scaling it

in any way;
• component macro 'RightShiftTick' moves all bits of the sample one place to the right in the

buffer, effectively dividing the value by two;
• component macro 'AddTick' sums together the original sample and a scaled, delayed sample

fed back from the output of the DSP Sum component;
• component macro 'DelayTick' takes a sample from the output of the DSP Sum component,

and adds a time delay to it;
• a second component macro 'RightShiftTick' divides this sample by two;
• the result of the summation is stored in the DSP output buffer, and then transferred to the

'Data' variable by the component macro 'ReadRawTick';
• the 'OutputDAC' macro is called to transfer this value to the DAC;

• the 'TickAllBuffers' component macro now moves onto the next sample taken from the ADC.
SPI_Init:

• enables SPI peripheral to control data transfer between the ADC, microcontroller and DAC, as
in earlier programs.

5.7 Further work

• Change the delay settings - 'Max Delay Count' and 'Initial Delay Count', on the DSP Delay
component and notice the effect on the sound heard.

• Observe the effect of changing the 'Scaler' parameter in the two 'RightShiftTick' macros.

 Page 39

6. Signals and waveforms

Signals carry information - speech, video or other data.

Usually, they do so as a time-varying voltage.
They can be analogue signals, which produce a voltage copy of the information, or digital signals, where
the information is in the form of a series of numbers, rather like a train timetable.

The diagrams above show both types, in the form of voltage-time graphs, in other word how the signals
change over time, (in the 'time domain').

However, they can equally be described in terms of their frequency content, (in the frequency domain).
Both kinds of diagram show the same signals, but illustrate different aspects of them.

The diagram above represents the frequency spectrum of a signal - the range and strength of
frequencies found in the signal. It aims to illustrate several types of unwanted components in the signal,
including pink noise and white noise. It also shows two harmonics of the fundamental signal. These
have frequencies which are whole number multiples of the fundamental frequency.

 Page 40

6.1 Noise

In electronics, noise is usually an unwanted extra component,
a contamination of a signal, produced by an external source.

'White' noise is named because of a comparison with light.
White light contains all colours (frequencies) of light.
Similarly, 'white noise' is made up of all frequencies. Other
sources of noise have a different frequency spectrum, and, to
keep the analogy going, are often named after colours, such
as pink, blue and grey. 'White' and 'pink' noise are of
significance in this course, as the DSP Frequency Generator
component within Flowcode can generate them.

Both 'white' noise and 'pink' noise contain all the frequencies audible to humans. However, 'white' noise
has the same power per unit frequency ('per hertz') across all frequencies, whereas the power per unit
frequency in 'pink' noise decreases as the frequency increases.

Because of the way we perceive sounds, we use the word 'octave' to mean the range of frequencies
between one frequency and double that frequency. For example, 100Hz and 200Hz are one octave
apart. That octave, then covers a range of 100Hz. However, the next octave runs from 200Hz to 400Hz,
and so has twice as big a range.

As 'white' noise has the same power delivered by each unit of frequency, the higher octaves deliver
more total power than lower octaves. To us, then, 'white' noise appears as a high frequency 'hiss', as
power is concentrated into the higher octaves.

'Pink' noise, however, appears to be equally loud at all frequencies, rather like the sound of rain falling
on the road, or wind rustling through the trees. As frequency increases, the power per unit frequency
falls off in such a way that each octave delivers the same power.

Though noise is usually regarded as a nuisance in electronic systems, 'pink' noise is often used to test
audio equipment. It may even help insomniacs by inducing deeper sleep!

 Page 41

6.2 Signal waveforms

Different waveforms are used for different purposes:

• Sinusoidal (sine wave) signals:

• are mathematically the simplest, as they consist of only one frequency;
• create sounds that we perceive as 'pure' tones.

 The following diagram shows the time variation and frequency spectrum of a sinusoidal signal.

• Square wave signals;
• look simple, but are made up from an infinite series of sine waves of related

frequencies;
• as a result, they are a harsh test of an electronic system's ability to reproduce signals

faithfully;
• can be used to test a system's response to a rapidly changing input signal ('step-

function');
• can be used as 'clock' signals to synchronise events, or as timing signals, in a

complex electronic system.

• Pulsed signals:
• are single square waves;
• can be used to trigger events, like time delays, or counting in an electronic system;

 The following diagram shows the time variation of square wave, and of a pulse.

• Triangular wave signals:
• a signal with equal rise and fall times;
• signal changes are linear;
• can be used to test a system's distortion

• Sawtooth signals:
• again, signal changes are linear, but the rise and fall times are very different;
• is rich in harmonics, making it useful in synthesisers and digital audio studios;
• can be used to test how rapidly the output voltage of a system can rise and fall.

 The following diagram shows the time variation of triangular and sawtooth waveforms.

 Page 42

 7 Program 4 - Sine wave generator

7.1 Introduction

This program demonstrates how to turn the dsPIC microcontroller into a valuable test instrument. It
generates sinusoidal signals at a frequency which can be varied using switch settings, and outputs them
from the 'Line Output' socket of the DSP Output E-Blocks board. These signals can then be used in
measuring the gain of a voltage amplifier, for example, or in determining its bandwidth, (useful
frequency range).

7.2 Objective

To generate sine wave signals with a frequency selected using switches.

7.3 Requirements

This exercise requires:
• a dsPIC programmer with a microcontroller device.

• a copy of Flowcode running on the PC

• a DSP Output E-Block (EB086)

• a graphical LCD E-Block (BL0157)

• a E-Block Switch board (BL0145)

• a universal power supply.

7.4 Flowcode program outline

The aim of the program is to:

• initialise:
• the DSP system;
• the graphical LCD;
• the ADC & DAC components.

• sense the state of the switches

• generate a digitised sine wave signal from the DSP Frequency Generator component, with a
frequency determined by the state of the switches.

• process it with the dsPIC
• scale the ensuing signal data;
• transfer the result to the output buffer.

• transfer the result to the DAC, and then pass the signal produced to the speaker on the DSP
output board;

• display the name of the program "4. Sine Generator" on the gLCD.

 Page 43

7.5 The system components

The flowchart controls eight components:

• the DSP System component, called 'DSPSystem1';

• the Frequency Generator component, called 'DSPFreqGen1';

• the Scale component, called 'DSPScale1';

• the Output component, called 'DSPOutput1';

• the SPI component;

• the graphical LCD component;

• the E-Blocks Switch Board;

Most of these have been described earlier. The notes that follow describe any new components, and
distinctive features of others in this program.

 Page 44

0

50

100

150

200

250

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

Series1

7.5.1 The Frequency Generator component

The Frequency Generator component, used in conjunction with the DSP System component, allows the
generation of a range of waveforms, including Sine, Square, Pulse, Triangle and Sawtooth. In addition,
there is the ability to generate both Pink and White noise, and to generate a Custom waveform.

Within the Properties for this component:

• Waveform type - allows the user to select the waveform 'shape' - sine, square, pulse, triangle,
sawtooth, white noise, pink noise, or custom. The choice made affects the appearance of the
Frequency Generator symbol on the Dashboard Panel.

• Amplitude - the 'height' of the wave, usually measured in volts. Where the signal is used to
generate a sound, the amplitude influences the loudness of the sound.

• Offset - the 'vertical' starting point for the wave - '127' means starting mid-way up so the wave
can grow bigger and smaller by equal amounts.

• Period - really, the time taken to produce one cycle of the wave, but in this case that translates
to the number of samples in each cycle (as the time to produce one cycle is fixed for the
program.

• Phase - the equivalent of offset for the 'horizontal' direction, allowing the waveform to have a
delayed, or early start.

• Data - the values of the samples used to create one cycle of the wave. The values are created
automatically by choosing the waveform type. Test this by selecting and deleting the data - it
magically re-appears when you hit the 'Return' key. (The only exception is the 'Custom'
waveform, where you have to feed in your own data values.)

 The diagram that follows shows the data produced by the sine wave generator exported to a
spreadsheet, and expressed as a graph.

• Period offset - allows the frequency of the wave to be modified. When set to 2, the system reads
every other sample, and so completes the cycle in half the time, doubling the frequency. When
set to 0.5, each sample is read twice, and so it takes twice as long to create one cycle, halving
the frequency.

 Page 45

7.5.2 The DSP Scale component

It is used with the 'LeftShiftTick' macro, given a parameter of '8'. The aim is to convert each 8-bit
sample from the Frequency Generator, read from the 'AudioSignal' buffer, into a 16-bit value, which is
then stored in the 'AudioScaled' buffer.

This process is illustrated below:

When you simulate this program, select 'View' 'Console'. Compare the data provided under the

'AudioSignal' and 'AudioScaled' tabs to see the results of this process.

7.5.3 The switches

It is used with the 'LeftShiftTick' macro, given a parameter of '8'. The aim is to convert each 8-bit
sample from the Frequency Generator, read from the 'AudioSignal' buffer, into a 16-bit value, which is
then stored in the 'AudioScaled' buffer.

7.6 Creating the program

Write the Flowcode program using the following steps as a guide:

• create a new Flowcode flowchart;

• select the 16-Bit PIC -> Misc -> BL0032 as a target;

7.6.1 The Dashboard panel:

• add a DSP System component to the Dashboard panel;

• configure it as follows:

• Handle DSPSystem1;
• Buffer count 2;
• Simple mode No;

(Setting 'Simple mode' to 'No' means that we can set different bit depths for buffers A and B.)

• Buffer A name AudioSignal;
• Buffer B name AudioScaled;

• Buffer A:
• Bit depth 8-bit;

• Sign Unsigned;
• Size 1;

• Buffer B:
• Bit depth 16-bit;
• Sign Unsigned;
• Size 1.

Configuring the 'AudioSignal' buffer with a 8-bit depth' ensures efficient use of ROM memory.

 Page 46

• add DSP Frequency Generator to the Dashboard panel;
• configure it as follows:

• Handle DSPFreqGen1;

• Buffer manager DSPSystem1;
• Output AudioSignal;
• Type Sine;
• Amplitude 200;
• Offset 127;
• Period 50;
• Phase 0;
• Data Created automatically as you choose the waveform type;
• Period Offset 1.000000
• Sample Rate 8000.000000.

Notice the link between sample rate (number of samples taken per second), 'Waveform - period'
(i.e. number of samples per cycle of the wave,) period (in the 'Frequency calculation' - equals
physical period of the waveform i.e. time taken for one cycle) and frequency (number of cycles
generated per second):

 Physical period = number of samples per cycle ('Waveform - period')
 sample rate (number of samples per second)

 Frequency = 1
 (physical)period

The (physical) period and frequency, in the 'Frequency calculation' section are both 'greyed out'
because their values are determined by the above calculations, once period and sample-rate
have been entered.

• add a DSP Scale component to the Dashboard panel;

• configure it as follows:

• Handle DSPScale1;
• Buffer manager DSPSystem1;
• Input AudioSignal;
• Output AudioScaled.

• add DSP Output component to the Dashboard panel;

• configure it as follows:

• Handle DSPOutput1;
• Buffer manager DSPSystem1;
• Output AudioScaled.

• add DSP Audio Input & DSP Audio Output components to the Dashboard panel, (from the
Hardware toolbox);

• add a gLCD component to the dashboard panel, (from the Displays toolbox.

 Page 47

7.6.2 The flowchart:

 Create the Flowcode flowchart shown in the diagrams that follow.

 The flowchart consists of a 'Main' flowchart, and four macros.

 The 'SPI_Init' macro is identical to those in earlier programs, and may be imported from there.

 The 'Main' macro has a menu section added to the loop. This reads the state of the two switches,
which control the frequency of the sine waves produced by the DSP Frequency Generator
component, and directs the progress of the program accordingly. The switches used in the
program are numbered 0 and 1 on the Switch board. The 'Read switches' input icon uses
masking so that it reads only bits 0 and 1, and transfers the resulting value to the variable
'switch'.

 The 'GLCD_Init' macro has only a minor change - the text printed on the gLCD is different.

 The 'timer_tick' macro has an additional component macro, the 'DSPScale1' macro, which
modifies the size of each sample, to make it compatible with the rest of the program.

Main

 Page 48

• Save the program as 'Exercise 4'.

timer_tick

 Page 49

7.6.3 The hardware:

• Use the same hardware configuration as the previous exercise.

7.6.4 Testing:

 Simulation:

Simulate the program as follows:

• From the 'View' menu, select the 'Data Recorder' option.

• Position the Data Recorder window near the bottom the screen, and resize if necessary.

• Start the simulation (by clicking on the icon, or pressing the F5 key);

• When you pause, or stop the simulation, you can examine these traces in more detail.

• (Pause the simulation by clicking on the icon, or by pressing the F7 key. Stop the

simulation by using the icon or by pressing the Shift and F5 keys together.)

• Use the mouse scroll wheel to zoom the waveform

• If you zoom in sufficiently, you will see that the waveform is digitised, as you will be able to

resolve the individual digital data points that make it up.

• Test the effect of 'closing' switches 0 and 1, both individually and together. They should

create different frequencies on the Data Recorder traces.

 Page 50

 Hardware:

• When you run the program on the dsPIC itself, you should hear a (fairly) pure tone produced
by the loudspeaker.

• Test the effect of closing switches 0 and 1, both individually and together. They should create
different audio tones from the speaker, as the signal frequency changes.

• Modify the program by changing the 'Waveform - Type' setting to 'Square', in the Frequency
Generator properties. Download the new program, and listen to the sound produced. It is
harsher.

• Do the same for the other types of waveform.

• Examine the waveforms on an oscilloscope attached to one of these points on the DSP
Output board:

• Audio In;
• Audio Gain;
• Audio Filtered.

 Page 51

7.6.5 The Flowcode program in detail

The task is:

• to take in a sample from the Frequency generator component;

• convert it from 8-bit format to 16-bit format;

• output the result from the dsPIC to the DAC on the DSP Output board;

• send the DAC output to the speaker on the DSP Output board.

Main macro:

• has much the same function as in previous programs, but it includes a 'switch' icon to change
the frequency of the output signal, depending on which switches are pressed. It does so by
changing the 'Period Offset' property of the Frequency Generator component, so that:

• pressing no switches gives a period offset value of '1' - no change to the frequency;

• pressing switch 0 gives a period offset value of '2' - twice the frequency;

• pressing switch 1 gives a period offset value of '3' - three times the frequency;

• pressing both switches gives a period offset value of '4' - four times the frequency;

GLCD_Init:

• sets up the graphical LCD to display the message "4. Sine Generator":

timer_tick:

• is triggered when Timer 1 overflows, and creates a new 'tick'. It then stores the next sample
in the 'AudioSignal' buffer;

• component macro 'LeftShiftTick' moves all bits of the sample eight place to the left in the
buffer, effectively converting it into a 16-bit sample;

• the result is stored in the DSP output buffer, and then transferred to the 'Data' variable by
the component macro 'ReadRawTick';

• the 'Output DAC' macro is called to transfer this value to the DAC;

• the 'TickAllBuffers' component macro now moves onto the next sample taken from the
Frequency Generator.

SPI_Init:

• enables SPI peripheral to control data transfer between the microcontroller and the DAC.

7.7 Further work

• Click on the Frequency Generator component to make visible the component's properties.

• Change the 'Waveform Type' to 'Sawtooth'.

• Delete the data in the 'Waveform Data' section, and click 'Return'.

• Click on the new data, right-click on the mouse, and select 'Copy'.

• Open a spreadsheet application, and paste the data into it.

• Then create a graph using that data, to check the shape produced.

• Click on the Frequency Generator component again.

• Change the 'Waveform Type' to 'Custom'.

• Create data for your customised wave by typing in a series of numbers, each between 0
and 255.

• Save the program, download it to the dsPIC, and listen to your synthesised notes!

• Click on the Frequency Generator component again.

• Change the 'Waveform Type' to 'White Noise'.

• Save the program, download it to the dsPIC, and listen to the result.

 Page 52

8 Program 5 - Waveform generator

8.1 Introduction

This program extends the functionality of the previous one by allowing the user to select the waveform
of the output signal using switches on the Switch E-Blocks board. Although it was possible to change the
waveform with the previous program, it required a modification to the program and a fresh download to
the dsPIC to effect the change. Here, it can be done while the program is running.

8.2 Objective

To generate signals whose waveform is selected using switches.

8.3 Requirements

This exercise requires:

• a dsPIC programmer with a microcontroller device.

• a copy of Flowcode running on the PC

• a DSP Output E-Block (EB086)

• a graphical LCD E-Block (EB084)

• a E-Block Switch board (BL0145)

• a universal power supply.

8.4 Flowcode program outline

The aim of the program is to:

• initialise:

• the DSP system;

• the graphical LCD;

• the ADC & DAC components.

• sense the state of the switches;

• generate a signal from the DSP Frequency Generator component, with either sinusoidal, square
or triangular waveform, depending on the switch selection.

• process it with the dsPIC

• scale the signal data;

• transfer the result to the output buffer.

• transfer the result to the DAC, and then pass the signal produced to the speaker on the DSP
output board;

• display the name of the program "5. Waveform Generator" on the gLCD.

 Page 53

8.5 The system components

The flowchart controls eleven components:

• the DSP System component, called 'DSPSystem1';

• four Frequency Generator components, called 'DSPFreqGen1', 'DSPFreqGen2', 'DSPFreqGen3' and
'DSPFreqGen4';

• the Scale component, called 'DSPScale1';

• the Output component, called 'DSPOutput1';

• the DAC & ADC components;

• the graphical LCD component;

Most of these have been described earlier. The notes that follow describe any new components, and any
distinctive features of the others in this program.

8.5.1 The DSP Frequency Generator components

All four Frequency Generator components generate signals, with an amplitude of 200 units and a
frequency of 160Hz.

• 'DSPFreqGen1' generates sinusoidal signals;

• 'DSPFreqGen2' generates square wave signals;

• 'DSPFreqGen3' generates triangular signals;

• 'DSPFreqGen4' generates sawtooth signals;

 Page 54

8.6 Creating the program

Write the Flowcode program using the following steps as a guide:

• create a new Flowcode flowchart;

• select the 16-Bit PIC -> Misc -> BL0032 as a target;

8.6.1 The Dashboard panel:

• add a DSP System component to the Dashboard panel;

• configure it as follows:

• Handle DSPSystem1;
• Buffer count 2;
• Simple mode No;
• Buffer A name AudioSignal;

• Buffer B name AudioScaled;

• Buffer A:
• Bit depth 8-bit;
• Sign Unsigned;
• Size 1;

• Buffer B:
• Bit depth 16-bit;
• Sign Unsigned;
• Size 1.

• add four DSP Frequency Generators to the Dashboard panel;

• configure them as follows:

• Frequency Generator 1:

• Handle DSPFreqGen1;
• Buffer manager DSPSystem1;
• Output AudioSignal;
• Type Sine;
• Amplitude 200;
• Offset 127;
• Period 50;

• Phase 0;
• Data Created automatically as you choose the waveform type;
• Period Offset 1.000000
• Sample Rate 8000.000000.

• Frequency Generator 2:

• Handle DSPFreqGen1;
• Buffer manager DSPSystem1;

• Output AudioSignal;
• Type Square;
• Amplitude 200;
• Offset 0;
• Period 50;
• Phase 0;
• Data Created automatically as you choose the waveform type;
• Period Offset 1.000000
• Sample Rate 8000.000000.

 Page 55

• Frequency Generator 3:

• Handle DSPFreqGen1;
• Buffer manager DSPSystem1;
• Output AudioSignal;
• Type Triangle;
• Amplitude 200;
• Offset 0;
• Period 50;
• Phase 0;

• Data Created automatically as you choose the waveform type;
• Period Offset 1.000000
• Sample Rate 8000.000000.

• Frequency Generator 4:

• Handle DSPFreqGen1;
• Buffer manager DSPSystem1;
• Output AudioSignal;

• Type Sawtooth;
• Amplitude 200;
• Offset 0;
• Period 50;
• Phase 0;
• Data Created automatically as you choose the waveform type;
• Period Offset 1.000000
• Sample Rate 8000.000000.

• add a DSP Scale component to the Dashboard panel;

• configure it as follows:

• Handle DSPScale1;
• Buffer manager DSPSystem1;
• Input AudioSignal;
• Output AudioScaled.

• add DSP Output component to the Dashboard panel;

• configure it as follows:

• Handle DSPOutput1;
• Buffer manager DSPSystem1;
• Output AudioScaled.

• add DSP Audio Input & DSP Audio Output components to the Dashboard panel, (from the
Hardware toolbox);

• add a gLCD component to the dashboard panel, (from the Displays toolbox)

 Page 56

8.6.2 The flowchart:

 Create the Flowcode flowchart shown in the following diagrams.

 Many of the macros are identical to those in earlier programs, and may be imported from there.

 The 'timer_tick' macro has a menu section added. This reads the state of the two switches, which
control the waveform of the signals produced, by selecting the DSP Frequency Generator
component, based on the state of the switches. Again, only switches '0' and '1' are used, and the
'Read switches' input icon uses masking to read only bits 0 and 1, and then transfers the result to
the variable 'switch'.

 The 'GLCD_Init' macro has only a minor change - the text printed on the gLCD is different.

Main

 Page 57

Save the program as 'Exercise 5'.

GLCD_Init

timer_tick

 Page 58

8.6.3 The hardware:

• The hardware set-up is identical to that used in the previous program:

8.6.4 Testing:

 Simulation:

• Simulate the program as before:

• From the 'View' menu, select the 'Data Recorder' option.
• Position the Data Recorder near the bottom the screen, and resize if necessary.

• Use the vertical scroll bars to locate the traces for 'AudioSignal' and 'AudioScaled'.

• Pause, or stop the simulation and examine the traces in more detail.

• Test the effect of 'closing' switches 0 and 1, both individually and together. They should
create different waveforms on the Data Recorder traces.

 Hardware:

• Again, test the effect of closing switches 0 and 1, both individually and together. They should
create different audio tones from the speaker, as the waveform changes.

 Page 59

8.6.5 The Flowcode program in detail

The task is:

• to take in a sample from the selected Frequency Generator component;

• convert it from 8-bit format to 16-bit format;

• output the result from the dsPIC to the DAC on the DSP Output board;

• send the DAC output to the speaker on the DSP Output board.

Main macro:
• has much the same function as in the previous program.

GLCD_Init:
• sets up the graphical LCD to display the message "5. Waveform Generator":

timer_tick:
• is triggered when Timer 1 overflows, and creates a new 'tick';

• it then reads the status of the switches, storing the result in the variable 'switch';

• it uses this value to select a Frequency Generator component;

• it stores the next sample from the selected Frequency Generator in the 'AudioSignal' buffer;

• the component macro 'LeftShiftTick' moves all bits of the sample eight place to the left in the
buffer, effectively converting it into a 16-bit sample;

• the result is stored in the DSP output buffer, and then transferred to the 'Data' variable by
the component macro 'ReadRawTick';

• the 'OutputDAC' macro is called to transfer this value to the DAC;

• the 'TickAllBuffers' component macro now moves onto the next sample taken from the
Frequency Generator.

SPI_Init:
• enables SPI peripheral to control data transfer between the microcontroller and the DAC.

8.7 Further work

• Click on each Frequency Generator component in turn to make visible the component's
properties.

• Modify the program by changing the 'Period Offset' settings to a different value for each.

• Download the new program and listen to the sound produced.

• Modify the original program so that:

• pressing switches 0 and 1 together has no effect;

• the sawtooth waveform is generated when switch 2 (alone) is pressed;

• a sine wave with double the original frequency is produced by pressing switch 3 (alone);

• a square wave with double the original frequency is produced by pressing switch 4
(alone).

 Page 60

Band pass

9 Filters

9.1 Types of filter

Filters are subsystems that modify the frequency spectrum of a signal in a predictable way.
There are four basic types:

• Low pass;
• High pass;
• Band pass;
• Band stop (also called 'notch' filter).

In general terms:
• low pass filters smooth the signals, removing high frequency edges caused by noise, for

example;
• high pass filters emphasise these sudden sharp changes.

The behaviour of these basic types is illustrated in the following (unrealistic) diagrams, which are shown
in the frequency domain.

These diagrams don't show the full story, as filters can affect the phase of the signal, as well as it's
frequency content. The following diagram illustrates what is meant by phase shift.

In audio systems, the phase of an audio signal is completely random, and so, in audio systems, phase
change is not often an important issue. As a result, we do not address that effect in this course.

 Low pass

High pass

Band stop

 Page 61

9.2 Filter action

The way in which a filter modifies the frequency spectrum of a signal is illustrated in the following
example. The diagrams assume ideal characteristics for the filter.

• Fourier's theorem leads to the idea that any continuous signal can be built up from a series of
sine waves. The first diagram illustrates this - the original signal is built by adding together
the appropriate mix of three sine waves, with frequencies of 'f', '2f' and '3f'.

• This signal is applied to the low-pass filter, whose characteristics are shown in the centre
graph below.

• The filter blocks the components with frequencies of '2f' and '3f', but passes the lowest
frequency component, i.e. a single sine wave.

• As a result, the output signal is sinusoidal, with frequency 'f', as shown below.

 Page 62

9.4 Filter properties

The following terms can be used to describe and define the behaviour of a filter:

• Linear - filters that obey superposition;

• If input 'A' produces output 'X', and input 'B' produces output 'Y', then input '(A + B)'
produces output '(X + Y)'.

• Time-invariant - the performance of the filter does not change with time.
• The output of the filter may vary with time, since the input signal probably varies with

time. However, the filter kernel (its frequency response), does not change over time.

• Gain - the amplification factor applied to the input signal at a certain frequency;

• usually voltage gain (= VOUT / VIN);

• active filters, usually based on components like operational amplifiers, can provide a
voltage gain > 1;

• passive filters have a maximum voltage gain of 1;

• is often expressed in decibels (dB);

• Voltage gain in dB = 20 x log(Voltage gain as a ratio);

• Bandwidth – the range of signal frequencies for which the filter has appreciable gain;

• often measured between the 'half-power' points, the frequencies where the power in the
signal has dropped to half its maximum value.

• these points are where the voltage gain drops to 71% (=0.71) of its maximum value.
 (Voltage is easier to measure than power,)

• measured in decibels, 20 x log(0.71) = -3dB roughly, so bandwidth is often measured as
the range of frequencies between the '-3dB' points.

• Cut-off frequency – the frequency where the gain is no longer appreciable;
• also referred to as –3 dB frequency.

• Roll off - the rate at which the filter moves from the pass band to the stop band;

• fast roll-off means that the transition band is very narrow.

• often measured in decibels per octave (i.e. the change in gain for a doubling of the signal
frequency. The next diagram shows three rates of roll off.

• Interpretation of the diagram:

▪ The greater the roll off, the more discriminating the filter
- it rejects unwanted frequencies better.

▪ 0dB means a voltage gain of one
- input and output signals have the same voltage.

▪ 6dB/octave - the amplitude halves when the frequency is doubled.

▪ 12dB/octave - the amplitude quarters when the frequency is doubled.

▪ 24db/octave - the amplitude reduces to 6% when the frequency is doubled.

 Page 63

9.3 Filter problems

Poor stop band attenuation:

• results in poor rejection of unwanted frequencies;

Overshoot:
• the voltage gain is temporarily higher than the intended final value;
• can often be the result of inputting a rapidly changing input signal;

• introduces distortion of the signal.
Ringing:

• the voltage gain oscillates, but slowly decays away to the intended value;
• another source of signal distortion;
• once again, can be caused by transients (high amplitude, short-duration input signal).

Together, overshoot and ringing can result in undesirable echoes, particularly evident when processing
signals rich in transients, such as those produced by percussion instruments.

 Page 64

10 Program 6 - Low pass filter

10.1 Introduction

This program introduces the topic of filtering - selecting certain frequencies and rejecting others.
It uses a low-pass filter to allow sine wave signals to pass to the output only if they have a frequency
below a set value.

10.2 Objective

To demonstrate the effect of a low-pass filter on sinusoidal signals with different frequencies.

10.3 Requirements

This exercise requires:

• a dsPIC programmer with a microcontroller device.

• a copy of Flowcode running on the PC

• a DSP Output E-Block (EB086)

• a graphical LCD E-Block (EB084)

• a E-Block Switch board (BL0145)

• a universal power supply.

10.4 Flowcode program outline

The aim of the program is to:

• initialise:

• the DSP system;

• the graphical LCD;

• the ADC & DAC components.

• generate a digitised sine wave signal from the DSP Frequency Generator component, having a
frequency dependent on the setting of two switches on the E-Blocks Switch board.

• process it by:

• scaling the signal to convert it to a 16-bit sample;

• filtering it with a low-pass filter component;

• transferring the result to the output buffer.

• transfer the result to the DAC, and pass the signal produced to the speaker on the DSP Output
board;

• display the name of the program "6. Low Pass Filter" on the gLCD.

 Page 65

10.5 The system components

The flowchart controls nine components:

• the DSP System component, called 'DSPSystem1';

• the Frequency Generator component, called 'DSPFreqGen1';

• the Scale component, called 'DSPScale1';

• the DSP Filter component, called 'DSPFilter1';

• the Output component, called 'DSPOutput1';

• the ADC & DAC components;

• the graphical LCD component;

• the EB2 Switch component.

The notes that follow describe the new component, and any distinctive features of the others in this
program.

10.5.1 The DSP Filter component

It is used to manipulate the frequency response of the DSP system.

Its properties can be changed to make it a low-pass filter (which stops high frequencies,) a high-pass
filter (which stops low frequencies,) a band-pass filter, (which stops very high and very low frequencies,
but passes frequencies in between,) a band-stop filter (which does the reverse of the band-pass filter,)
and two others, the FIR and the IIR filter, which do not form part of this course.

Another of its properties is used to set the cut-off frequency, the boundary frequency at which the
behaviour just described begins, by setting a coefficient, a numerical value, used in the formula:

Cut-off frequency = Nyquist frequency
 Coefficient

The Nyquist frequency is the highest signal frequency that can be sampled successfully, and is given by
the formula:

Nyquist frequency = Sample rate
 2

10.5.2 The switches

As in program 4, the switches are used to change the frequency of the output sinusoidal signal by
altering the period offset value. These can produce twice, three times and four times the base frequency
of 160Hz, and show the effect of the low-pass filter, which has a cut-off frequency of 200Hz.

 Page 66

10.6 Creating the program

Write the Flowcode program using the following steps as a guide:

• create a new Flowcode flowchart;

• select the 16-Bit PIC -> Misc -> BL0032 as a target;

10.6.1 The Dashboard panel:

• add a DSP System component to the Dashboard panel;

• configure it as follows:

• Handle DSPSystem1;
• Buffer count 3;
• Simple mode Yes;
• Buffer A name AudioSignal;
• Buffer B name AudioScaled;
• Buffer C name AudioFiltered;
• Bit depth 16-bit;
• Sign Unsigned;
• Size 1.

• add DSP Frequency Generator to the Dashboard panel;

• configure it as follows:

• Handle DSPFreqGen1;
• Buffer manager DSPSystem1;
• Output AudioSignal;
• Type Sine;
• Amplitude 200;
• Offset 127;
• Period 50;

• Phase 0;
• Data Created automatically as you choose the waveform type;
• Period Offset 1.000000
• Sample Rate 8000.000000.

• add a DSP Scale component to the Dashboard panel;

• configure it as follows:

• Handle DSPScale1;

• Buffer manager DSPSystem1;
• Input AudioSignal;
• Output AudioScaled.

• add a DSP Filter component to the Dashboard panel;

• configure it as follows:

• Handle DSPFilter1;
• Buffer manager DSPSystem1;
• Input AudioScaled;
• Output AudioFiltered;
• Type Low Pass;
• Coefficient 0 10;
• Sample Rate 8000.000000

• add DSP Output component to the Dashboard panel;

• configure it as follows:

• Handle DSPOutput1;
• Buffer manager DSPSystem1;
• Output AudioFiltered.

 Page 67

• add DSP Audio Input & DSP Audio Output components to the Dashboard panel, (from the
Hardware toolbox);

• add a gLCD component to the dashboard panel, (from the Displays toolbox)

 Page 68

10.6.2 The flowchart:

 Create the Flowcode flowchart shown in the following diagrams.

 Many macros are identical to those in earlier programs, and may be imported from there.

 The 'Main' macro is identical to that used in program 6.

 The 'GLCD_Init' macro has only a minor change - the text printed on the gLCD is different.

 The 'timer_tick' macro has an additional component macro, to control the DSP Filter component.

Main

 Page 69

• Save the program as 'Exercise 6'.

timer_tick

 Page 70

10.6.3 The hardware:

• The hardware set-up is identical to that used in the last two programs:

10.6.4 Testing:

 Simulation:

• Simulate the program as before:

• Position the Data Recorder near the bottom the screen, and resize if necessary.

• Use the vertical scroll bars to locate the traces for 'AudioScaled' and 'AudioFiltered'. (The
'AudioSignal' trace shows only a flat line, as it is produced in 8-bit format, which is tiny on
the scale used in the Data Recorder.)

• Pause, or stop the simulation and examine the traces in more detail.

• Test the effect of 'closing' switches 0 and 1, both individually and together, to increase
the frequency of the signal, from 160Hz, to 320Hz, 480Hz and 640Hz.

• As you do so, the 'AudioFiltered' trace gets smaller, as the filter cuts out frequencies
above the cut-off frequency of 400Hz.

 Hardware:

• Again, test the effect of closing switches 0 and 1, both individually and together. They should
create different audio tones from the speaker, which get quieter as the frequency increases.

10.6.5 The Flowcode program in detail

The task is:

• to take in a sample from the Frequency Generator component;

• convert it from 8-bit format to 16-bit format;

• process it with the DSP Filter component;

• output the result from the dsPIC to the DAC on the DSP Output board;

• send the DAC output to the speaker on the DSP Output board.

Main macro:
• has much the same function as in program 4.

• reads the status of the switches, storing the result in the variable 'switch';

• uses this value to select the value of the 'Period Offset' property, which then determines the
frequency of the signal produced by the Frequency Generator component.

GLCD_Init:
• sets up the graphical LCD to display the message "6. Low Pass Filter":

timer_tick:
• is triggered when Timer 1 overflows, and creates a new 'tick';

• it stores the next sample from the selected Frequency Generator in the 'AudioSignal' buffer;

• the component macro 'LeftShiftTick' converts it into a 16-bit sample, and stores the result in
the 'AudioScaled' buffer;

• the component macro 'FilterTick' performs the filter operation on this sample, and stores the
result in the 'AudioFiltered' buffer;

• this is passed to the DSP Output component, which executes the component macro
'ReadRawTick' to transfer it to the 'Data' variable;

• the 'Output DAC' macro transfers this value to the DAC;

• the 'TickAllBuffers' component macro now moves onto the next sample taken from the
Frequency Generator.

 Page 71

10.7 Further work

• Click on the DSP Frequency Generator component;

• Modify the program by changing the 'Waveform Type' setting to a different waveform.

• Simulate the program, and view the effect of the filter on the signal using the Data
Recorder.

• Interpret what happens. (Remember - other waveforms have a more complex frequency
spectrum, and contain a range of harmonics at higher frequencies. The low-pass filter will
have a greater effect on these than on lower frequencies.)

• Download the new program and listen to the sound produced. Is it as 'harsh' as the raw
waveform?

• Click on the DSP Filter component;

• Change the 'Coefficient' setting to a different value (say '1') to increase the cut-off
frequency.

• Simulate the program, and view the effect of the filter on the signal using the Data
Recorder.

• Download the new program and listen to the sound produced.

• Explain any differences.

 Page 72

11 Digital filters

11.1 Analogue versus digital filters

Filters can be made in two basic ways:

• using analogue hardware;

• implementing equations using a software program in a digital system, such as a dsPIC.

Analogue filters:

• built from resistors, capacitors, and inductors, low cost components, and so are cheap;

• accept a wide range of both amplitudes and frequencies;

 but

• component values have tolerances, (i.e. are made to a certain accuracy), making the
result unpredictable from one filter to another;

• properties are temperature dependent.

Digital filters:

• can achieve higher accuracy and greater reliability. Accuracy is determined by factors like
the resolution of the ADC, and the number of bits used to describe the data.

• produce outputs which can be stored easily, in memory. Analogue data can be stored, on
magnetic tape, for example, but is then prone to added noise from the storage process.

• can be designed to eliminate the filter problems outlined in section 10.3;

• can be re-designed more easily, as this usually involves changes in software, not in
hardware;

• produce results which are sensitive to electrical noise;

 but

• generate signals which include quantisation error;

• can introduce latency;

• have outputs prone to contain aliasing frequencies.

11.2 Digital filters

Uses of digital filters can be divided into two general areas:

• Removal of unwanted frequency components such as:
• electrical noise;

• electrical interference from other signal sources.

• Removal of distortion caused by:

• hardware imperfections;

• system non-linearity.

Their excellent performance leads to widespread use in:

• audio and speech manipulation;

• modems;

• video and optical image processing;

• motor control systems.

 Page 73

0

50

100

150

200

250

300

350

400

450

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97

Series1

11.2.1 Implementing Digital filters

Digital filters are created in one of two ways:

• convolution;

• implementing a difference equation.

Convolution:

• is a mathematical method (as is addition, subtraction, multiplication and division,) for
combining two signals to produce a third;

 In this case, the two initial signals are the input signal and the frequency response of the
filter, (also called the filter kernel, or impulse response of the filter).

• is described by an equation of the form

y = h * x

 where * = convolution operator,

 y = output signal,

 x = input signal,

 h = filter kernel,(frequency response, or impulse response).

• involves repeated multiplication and addition operations - ideal for a dsPIC, with its MAC
subsystem;

 One form of the convolution equation gives the output of the nth sample as:

• in simple terms, it perform an average (weighted) of samples in the neighbourhood of a
particular sample, and replaces the sample’s value by that average.

Difference equation:

• is described, for a simple low pass filter, by an equation of the form:

 where symbols have the same meaning as above.

• can be explored using a spreadsheet, and expressing the results as a chart, (see section
13.7).

 The chart below was obtained by setting the 'period', (number of samples in a cycle) to
'100', and then importing the data into a spreadsheet. An 'output' column was created by
setting up the equation, (in the form '= A3 + A2' etc.), and then displayed as a chart.

 Page 74

12 Program 7 - High pass filter

12.1 Introduction

Still on the topic of filtering, this program demonstrates the use of a high-pass filter to allow sine wave
signals to pass to the output only if they have a frequency above a set value.

12.2 Objective

To demonstrate the effect of a high-pass filter on sinusoidal signals with different frequencies.

12.3 Requirements

This exercise requires:

• a dsPIC programmer with a microcontroller device.

• a copy of Flowcode running on the PC

• a DSP Output E-Block (EB086)

• a graphical LCD E-Block (EB084)

• a E-Block Switch board (BL0145)

• a universal power supply.

12.4 Flowcode program outline

The aim of the program is to:

• initialise:

• the DSP system;

• the graphical LCD;

• the ADC & DAC components.

• generate a sine wave signal from the DSP Frequency Generator component with a frequency
determined by the setting of two switches on the E-Blocks Switch board.

• process it by:

• scaling the signal to convert it to a 16-bit sample;

• filtering it with a high-pass filter component;

• transferring the result to the output buffer.

• copy the result to the DAC, and pass the output produced to the speaker on the DSP Output
board;

 display the name of the program "7. High Pass Filter" on the gLCD.

12.5 The system components

The flowchart controls nine components:

• the DSP System component, called 'DSPSystem1';

• the Frequency Generator component, called 'DSPFreqGen1';

• the Scale component, called 'DSPScale1';

• the DSP Filter component, called 'DSPFilter1';

• the Output component, called 'DSPOutput1';

• the SPI component;

• the graphical LCD component;

• the EB2 switch component.

 Page 75

There are no new components in this program. These notes describe any distinctive features of the
others in this program.

12.5.1 The DSP Filter component

The properties are identical to those in the previous program, except that, this time, it is configured as a
high-pass filter. The cut-off frequency is adjusted to match the range of frequencies generated by the
DSP Frequency Generator.

12.5.2 The switches

As in programs 4 and 6, the switches are used to change the frequency of the output sinusoidal signal
by altering the period offset value.

12.6 Creating the program

Write the Flowcode program using the following steps as a guide:

• create a new Flowcode flowchart;

• select the 16-Bit PIC -> Misc -> BL0032 as a target;

12.6.1 The Dashboard panel:

• add a DSP System component to the Dashboard panel;

• configure it in the same way as in program 6:

• Handle DSPSystem1;
• Buffer count 3;
• Simple mode Yes;
• Buffer A name AudioSignal;
• Buffer B name AudioScaled;
• Buffer C name AudioFiltered;
• Bit depth 16-bit;

• Sign Unsigned;
• Size 1.

• add DSP Frequency Generator;

• configure it in the same way as before:

• Handle DSPFreqGen1;
• Buffer manager DSPSystem1;
• Output AudioSignal;

• Type Sine;
• Amplitude 200;
• Offset 127;
• Period 50;
• Phase 0;
• Data Created automatically as you choose the waveform type;
• Period Offset 1.000000
• Sample Rate 8000.000000.

• add a DSP Scale component;

• configure it as follows:

• Handle DSPScale1;
• Buffer manager DSPSystem1;
• Input AudioSignal;
• Output AudioScaled.

 Page 76

• add a DSP Filter component;

• configure it as follows:

• Handle DSPFilter1;
• Buffer manager DSPSystem1;
• Input AudioScaled;
• Output AudioFiltered;

• Type High Pass;
• Coefficient 0 2;
• Sample Rate 8000.000000

• add DSP Output component;

• configure it as follows:

• Handle DSPOutput1;

• Buffer manager DSPSystem1;
• Output AudioFiltered.

• add DSP Audio Input & DSP Audio Output components to the Dashboard panel, (from the
Hardware toolbox);

• add a gLCD component to the dashboard panel, (from the Displays toolbox)

 Page 77

12.6.2 The flowchart:

 Create the Flowcode flowchart shown in the following diagrams.

 Most macros are identical to that in program 6.

 The 'GLCD_Init' macro has different text printed on the gLCD screen.

• Save the program as 'Exercise 7'.

GLCD_Init

 Page 78

12.6.3 The hardware:

• The hardware set-up is identical to that used in the previous programs:

12.6.4 Testing:

 Simulation:

• Simulate the program as before:

• Position the Data Recorder near the bottom the screen, and resize if necessary.

• Use the vertical scroll bars to locate 'AudioScaled' and 'AudioFiltered' and ignore the
'AudioSignal' trace for the same reason as that given in program 6.

• Pause, or stop the simulation and examine the traces in more detail.

• Test the effect of 'closing' switches 0 and 1, both individually and together, to increase
the frequency of the signal, from 160Hz, to 320Hz, 480Hz and 640Hz.

• Notice the amplitude of the 'AudioFiltered' trace as you do so.
 (Remember - the filter cut-off frequency is 2000Hz for this program.)

 Hardware:

• Again, test the effect of pressing switches 0, 1, 2 and 3. They should create different tones
and loudness levels as the frequency increases.

12.6.5 The Flowcode program in detail

The task is very similar to that in program 6:

• to take in a sample from the Frequency Generator component;

• convert it from 8-bit format to 16-bit format;

• process it with the DSP Filter component;

• output the result from the dsPIC to the DAC on the DSP Output board;

• send the DAC output to the speaker on the DSP Output board.

Main macro:
• has much the same function as in program 4.

• reads the status of the switches, storing the result in the variable 'switch';

• uses this value to select the value of the 'Period Offset' property, which then determines the
frequency of the signal produced by the Frequency Generator component.

GLCD_Init:
• sets up the graphical LCD to display the message "7. High Pass Filter":

timer_tick:
• is triggered when Timer 1 overflows, and creates a new 'tick';

• it stores the next sample from the selected Frequency Generator in the 'AudioSignal' buffer;

• the component macro 'LeftShiftTick' converts it into a 16-bit sample, and stores the result in
the 'AudioScaled' buffer;

• the component macro 'FilterTick' performs the filter operation on this sample, and stores the
result in the 'AudioFiltered' buffer;

• this is passed to the DSP Output component, which executes the component macro
'ReadRawTick' to transfer it to the 'Data' variable;

• the 'Output DAC' macro transfers this value to the DAC;

• the 'TickAllBuffers' component macro now moves onto the next sample taken from the
Frequency Generator.

SPI_Init:
• enables SPI peripheral to control data transfer between the microcontroller and the DAC.

 Page 79

12.7 Further work

• Click on the DSP Frequency Generator component;

• Modify the program by changing the 'Waveform Type' setting to a different waveform.

• Simulate the program, and view the effect of the filter on the signal using the Data
Recorder.

• Interpret what happens.

• Download the new program and listen to the sound produced. Is it as 'harsh' as the raw
waveform?

• Click on the DSP Filter component;

• Change the 'Coefficient' setting to a different value (say 10) to reduce the cut-off
frequency.

• Simulate the program, and view the effect of the filter on the signal using the Data
Recorder.

• Download the new program and listen to the sound produced.

• Explain any differences.

Congratulations! You've finished the course.

14. Instructor Guide

14.1

Introduction

The course is essentially a practical one. The E-Blocks hardware makes it simple and quick to

program, construct and test microcontroller circuits.

14.2

Aim

The course extends knowledge of the graphical programming language Flowcode, to its use

in programming dsPIC microcontrollers.

14.3

Prior Knowledge

It is advisable that the student understands and has experience of programming a standard

microcontroller, using Flowcode.

14.4 Learning Objectives

On successful completion of this course, the student will be able to:

• run the Flowcode application;

• describe the nature of human hearing, state the audio frequency range and explain what is meant

by 'fundamental' and 'harmonics';

• compare and distinguish between analogue and digital signals;

• explain what is meant by sampling, and give one disadvantage of its use;

• explain what is meant by aliasing, and give an example of its occurrence;

• state the Nyquist sampling criterion, and explain its link to aliasing;

• describe the function of analogue-to-digital converters and list factors affecting resolution;

• draw a sketch to illustrate the meaning of 'a sample-and-hold output';

• describe the function of a digital-to-analogue converter ;

• explain the following terms used in connection with DAC's

 - resolution, maximum sampling rate, monotonicity and dynamic range.

• construct a DSP system, consisting of:

• a BL0032 dsPIC E-Blocks 2 board;

• a DSP Input E-Blocks (EB085) board;
• a DSP Output E-Blocks (EB086) board;

• a E-Blocks graphical LCD (BL0157) board;

• a E-Blocks Switch (BL0145) board.

• create a Flowcode flowchart, using the following functions:

• Input, Output, Loop, Calculation, Decision and 'Switch';

• Macro, Component Macro and Interrupt;

• and the following components:

• DSP System, Input, Output and Frequency Generator components;

• DSP Scale, Sum, Delay, and Filter components;

• SPI, GLCD and Switch components.

• simulate a Flowcode flowchart, and view the signals produced on the 'Data Recorder'.

• describe the role of the DSP System component as buffer manager;

• describe the role of buffers in the DSP system;

• explain how the on-board timer overflows cause the program to progress;

• describe the role of the SPI component;

• add DSP and related components to the Dashboard panel, and configure them;

• configure the jumper settings of the E-Blocks hardware;

• use the programmer board to provide power to the satellite E-Blocks boards;

• devise a testing regime for the Flowcode programs;

• use a Calculation function to convert a sample from 8-bit into 16-bit;

• modify the text displayed on the graphical LCD;

• distinguish between a microprocessor, a microcontroller and a DSP microcontroller;

• describe the meaning of 'pipelining' and 'dynamic pipelining';

• describe the following DSP system features:

• hardware multipliers accumulators and MAC hardware;

• barrel shifters;

• circular buffers;

• direct memory access.

• explain what is meant by 'modulo' and 'bit-reversed' addressing, and 'saturation logic';

• explain the terms 'echo' and 'reverberation', when applied to audio signals;

• describe the role of the DSP Scale, Sum and Delay components, in echo and reverberation;

• configure the bit-depth and type of buffer using the 'Properties' pane;

• compare the general features of the following communication protocols - SPI, I2C and UART.

• distinguish between 'time domain' and 'frequency domain' descriptions of a signal;

• explain what is meant by 'electrical noise';

• distinguish between 'pink' noise and 'white' noise;

• recognise the following waveforms, from time domain graphs:

• sinusoidal;

• square;

• pulse;

• triangular;

• sawtooth.

• draw the frequency spectrum for a sinusoidal signal;

• configure the following properties of a Frequency Generator component:

• waveform type;

• amplitude;

• offset;

• period;

• phase;

• period offset.

• explain the role of the 'period offset' value in changing the frequency of the signal produced;

• calculate the period and frequency, given the number of samples in each cycle and the sample

rate;

• create a Flowcode flowchart section to allow the frequency of the signal produced by a Frequency

Generator component, or its waveform, to be selected by switches;

• recognise the following filter types from their frequency spectra - low pass, high pass, band pass

and band stop.

• draw voltage/time graphs for a sinusoidal signal to explain what is meant by 'phase';

• draw frequency spectra to illustrate the action of a filter;

• explain the following terms, used to describe filters:

• pass band, transition band and stop band;

• linear, time-invariant;

• gain ,bandwidth, roll-off andcut-off frequency;

• identify on a frequency spectrum graph, and explain the unwanted consequences of poor stop

band attenuation, overshoot and ringing.

• use the relationship between Nyquist criterion and filter coefficient to configure the cut-off

frequency for a Filter component;

• compare the performance of analogue and digital filters;

• outline the two ways, using convolution or using difference equations, to implement a digital filter.

14.5 What the student will need:

To complete the course, the student will need the following:

• Flowcode software

• E-blocks including:
• a dsPIC upstream board (BL0032)

• a DSP Input E-block (EB085)

• a DSP Output E-block (EB086)

• a Switch unit E-block (BL0145)

• a Graphical LCD E-Block (BL0157)

• a high impedance microphone and earpiece

• a universal power supply (HP2666)

14.6 Time:

It will take students between twelve and sixteen hours to complete the worksheets.

Additional time will be needed to study the background concepts, depending on the students'

experience and prior knowledge.

14.7 Further information:

This course contains all the information you need to gain a firm foundation in the use of

Flowcode with the dsPIC. You are urged to look at the extensive volume of information and

examples contained in the Matrix wiki, found at www.matrixtsl.com/wiki to expand your

knowledge and experience.

15. Scheme of work

Section Notes for the Instructor Timing

1

The introduction gives a brief overview of Digital Signal Processing, and
gives the block diagram of a simple DSP system.

To remind students of what they almost certainly met in secondary science,
the topic of sound and hearing is re-visited. Where students have not
studied these topics previously, it may be necessary for the instructor to
give a detailed presentation on the topic.

Although the world seems obsessed with turning everything digital,
analogue signals still have their place. The next section compares the two.

One consequence of using digital processing is that the analogue quantity
must be sampled. This involves making a measurement of , say, the signal
voltage periodically, and then processing these samples. Sampling can be
the Achilles' heel of digital processing, as it can conceal real aspects of the
signal, and, equally, introduce others that do not exist in the original signal.
It is important to use an appropriate sampling frequency for the signal
under investigation. Too high a sample-rate adds to the processing burden,
and can slow it down by an unacceptable amount. Too low, and aliasing
becomes a problem, as well as the quality of the processed signal.
Traditionally, telephone services struck a happy medium at 8000 samples
per second. The resulting audio is intelligible, but by no means hi-fi.
However, the task of processing these signals is manageable.

The course briefly discusses the Nyquist sampling theorem, and itseffect on
aliasing. The following topics are analogue-to-digital and digital-to-analogue
conversion. The aim of these is straightforward, but there are many ways to
implement that aim, and they go beyond the scope of this course.

The instructor may wish, at this point, to elaborate on the techniques
involved in these conversions. At a minimum, it is recommended that the
vocabulary of these converters is explained, ideally with reference to the
AD7680 and the AD5662 devices used on the DSP Input and Output boards.

To enhance their understanding, students could be encouraged to research
topics such as analogue-to-digital and digital-to-analogue conversion, using
resources such as the internet, and could be required to create
presentations on topics like these for their colleagues.

 2 2

This section examines aspects of digital signal processing, and highlights
differences between microprocessors, microcontrollers and digital signal
microprocessors. Only a minority of students should find this discussion difficult.
The important issue is that DSC's are built for speed. They operate in real time,
and at high sample rates, and so the processing must create as little latency as
possible. The majority of tasks carried out by a DSC could be done on a
standard microcontroller, but would not be done so quickly.

There follows an exploration of the meaning of pipelining, an important
technique in many processors. The instructor may wish to expand this treatment
to ensure that its significance is driven home.

After that, other features of a typical DSC are explored, and as before, the
instructor may wish to extend this list, or spend time extending the cover of
individual topics in it. One of the more difficult, and important ideas is that of a
circular buffer, and, related to it, modulo addressing. Here the instructor should
check that students understand what is happening, and why it is important.

 3

The main objective of the first program is to familiarise the students with the
software and hardware. Although not apparently an intricate task, it brings out a
range of digital signal processing techniques.

First of all, the ADC converts the analogue audio signal to digital. The dsPIC
then takes a sample each time the on-board timer overflows. The result is
passed to the output buffer, and from there to the DAC on the DSP Output
board, where it is converted back to an analogue signal. This is then outputted
to the earpiece or speaker.

Much of the preparation for this has already taken place, in looking at sampling,
and at ADC's and DAC's in section 1. Section 2 starts by examining the functions
of the DSP System, Input and Output components, and the SPI and GLCD
components. It may be that students need help with the concept of a buffer. It
is effectively a 16-bit shift register, which talks to the processor in parallel
fashion, but talks to the peripherals in serial mode.

What may not be apparent is the role of the timer. The Main program plays only
a minor role. After initialising the GLCD, and the SPI and DSP subsystems, it
simply keeps looping indefinitely - not doing anything, just looping. The SPI
subsystem is used to control communication between the dsPIC (the master)
and the ADC and DAC (the slaves). The ADC SPI link is enabled by applying a
logic 0 signal to its enable pin, Port F bit 0. The DAC SPI is enabled in similar
fashion on Port F bit 1. The 'SPI_Init' macro starts by disabling both, by setting
both Port F bit 0 and bit 1.

The real work is done by the interrupt routine. Every time the onboard timer
overflows (exceeds its maximum count,) it generates an interrupt, which causes
the processor to run through the 'timer_tick' macro. In the language of DSP, the
'tick' it creates triggers the system to read and process the next sample, and
then increments the pointers to the subsequent samples in all the buffers,
(actually, only one in this program).

There are two modes for reading the buffers, either the system processes one
sample from the buffer at a time, or it reads the contents of the whole buffer,
and then processes it. The latter is called simply a 'Function' macro. It involves
a loop to cycle through all locations in the buffer, performing the macro's
functionality. The former is called a 'Function tick' macro. This performs the
macro's functionality on the value from a single location in the buffer. The
'TickAllBuffers' macro moves the buffer pointers to the next sample.

30-40 mins

The 'Sample ADC' and 'Output DAC' macros start by enabling the respective
devices by applying logic 0 to the enable pin. The rest is concerned with
formatting the 8-bits of data from the SPI bus, to make it compatible with the
ADC and DAC, both of which expect 24 bytes of data. This conversion is done
inside the Calculation icons. The text attempts to illustrate one of these
conversions, but it may need extra input from the instructor to drive home the
significance of what is happening.

As these macros, and the 'SPI_Init' macro, are re-used, unchanged, in later
programs, it is worth exporting them to an area accessible to the students, so
that they can later import them, to save time.

Testing takes place solely on the hardware. If there is a problem, then it is
worth checking the jumper settings, and checking that the peripheral boards are
powered from the Multiprogrammer. A separate microphone and earpiece make
testing easier than using the microphone and speaker on the DSP Input and
Output boards.

The instructor could test the student's grasp of the program by asking for an
explanation of the role of a selection of the icons in the flowchart.

 4

Program 2 extends the techniques introduced in program 1, by adding an echo
to the output. It does so by taking a copy of each sample, delaying it and then
adding it to the output. This involves the DSP Delay and DSP Sum components.
What may not be apparent to the students is the need for the DSP Scale
component as well. The issue of saturation occurs in both analogue and digital
electronics - that a given system has a maximum value of output that, once
reached, masks any further increase. The DSP Scale component uses the
'RightShiftTick' macro to shift the sample value one place to the right in the
buffer, thus dividing it by two, eliminating the chance of the output reaching
saturation when the summation with the 'echo' is performed.

As an added precaution, in the DSP_Sum1'AddTick' macro, the 'Rollover' value is
set as '0', preventing rollover. This means that once the maximum value is
reached, any further addition will not overflow the value to its minimum, '0', but
freeze it at maximum. Although this introduces an error, it is less noticeable
than allowing rollover to take place.

Adding further DSP components to the flowchart increases the number of
buffers to four. Configuring the DSP System component using 'Simple' mode,
means that all four have the same properties - 16-bit depth, unsigned values,
and each buffer containing only one value.

The 'SPI_Init', 'Sample ADC' and 'Output DAC' macros are identical to those
used in program 1, and may be imported into this program to save time. The
main changes are to the 'timer_tick' macro.

The hardware set-up is identical to that used for program 1. The presence of an
echo is more obvious if the student makes a 'clicking' noise rather than a
continuous sound.

If there are problems, the check-list is the same as that outlined in program 1.

20-30 mins

 5

Program 3 is a development of program 2. This time, repeated, scaled and
delayed copies of the output are added to the input, producing a reverberation
effect. As for program 2, this is best heard on a separate earpiece rather than
the loudspeaker on the DSP Output board.

The increased DSP component count means that the buffer count is increased to
five, but they are all configured identically, using the 'Simple' mode.

As before, most of the macros are unchanged and can be imported from an
accessible storage area to save time. There is a minor change to the 'GLCD_Init'
macro. The 'timer_tick' macro is extended by adding a delay and a scaling factor
to the fedback signal.

The system still looks for data from the ADC, and so it does not simulate easily.
Instead the testing takes place directly on the hardware, which is set up as in
the earlier programs. Any problems should be investigated in the same way as
that given earlier.

20-30 mins

 6

This section looks at signal waveforms, but also introduces the idea of
representing them in the time domain, and in the frequency domain. This paves
the way for later studies into the Fourier transforms used to convert from one to
the other. For some students, it may be necessary to give a number of examples
of waveforms viewed in both domains.

It also brings in the idea of 'frequency spectrum', preparing the way for a study
of filters in later sections. Again, some students will benefit from exercises which
analyse frequency spectra.

At this point, the instructor may wish to drive home the difference between
noise, an additional externally generated component of a signal, and distortion,
an unwanted internal effect which modifies the frequency spectrum of the
signal. These are commonly confused.

The section on noise includes mention of different types of noise, 'pink' noise
and 'white' noise in particular. The obvious difference is in their frequency
content. 'White' noise results from completely random electrical processes, and
extends across the full frequency spectrum. 'Pink' noise, also called '1/f' or
'flicker' noise, has an intensity which falls off at higher frequencies, (hence the
'1/f' name). It is generated in virtually all electronic components by physical
effects at an atomic level.

It is important that the students accept that a pure sine wave signal in the time
domain, is represented by a single spike in the frequency domain i.e. contains
only one frequency. This will lead to a discussion of Fourier's theorem, that a
more complex signal can be created by adding a series of sinusoidal signals,
with specific amplitudes and phases. To reinforce this, the instructor could show
frequency spectra of square wave and triangular wave signals.

Pulsed signals are different, in that they are not 'periodic' (repeated with a
regular time period.)

 7

Program 4 demonstrates the use of the Frequency Generator component. Notice
the absence of the 'Sample ADC' macro, as input no longer comes that way, but
from the Frequency Generator component. The 'SPI_Init' and 'Output DAC'
macros are unchanged, and may be imported as before.

The configuration of the DSP System component is slightly different, in that
'Simple' mode is not used. Instead, the two buffers, 'AudioSignal' and
'AudioScaled', are configured separately, as 8-bit and 16-bit respectively. The
reason for this is the way that the 'Data Recorder' is set up. Without this, the 8-
bit signal would appear inseparably close to the zero line.

The properties of the Frequency Generator are listed. The instructor should
ensure that the significance of each is understood by the students. As the wave
is digitised, the normal wave terminology is changed slightly. The term 'period',
for example, indicates the number of samples within each cycle of the wave. As
the sample rate (number of samples per second), is fixed, this value determines
the time taken to generate one cycle - the standard definition of 'period'.

The 'data' is generated by the software once the 'Waveform Type' is selected.
The text shows that copying this data into a spreadsheet program and
expressing it in the form of a chart shows that it does represent the particular
waveform. The exception is when 'Custom' is chosen as the waveform type.
Then the user adds data to create the waveform.

The 'Period Offset' value is used to change the frequency of the signal produced.
It does so by changing the offset, the change in the pointer to the next sample
to be read. Making this value '4' means that every fourth sample is read,
meaning that the whole data series, one cycle, is generated in 1/4 of the time,
increasing the frequency four-fold. When the 'Period Offset' is set to 0.5, each
data sample is visited twice, so that it twice as long to work through the full
data series. As a result, the frequency is halved. The program allows the
frequency to be selected on two switches, using the menu structure within the
'Main' macro. This selects the value of 'Period Offset' used to generate the
waveform, as either '1', '2', '3' or '4'.

The Frequency Generator output is stored the buffer called 'AudioSignal'. This is
configured with a depth of 8-bits in order to save ROM memory. Within the
'timer_tick' macro, the DSP Scale component is used to convert this to a 16-bit
number, by applying the 'LeftShiftTick' macro to move the data eight places to
the left. This process is illustrated in a diagram, but it may need reinforcement.

For the first time in the module, the program is first simulated before being
downloaded. During this, the right-hand arrow on the 'SPI' component turns
green, to represent the flow of data. Otherwise, to see anything happening, the
'Data Recorder' is needed. This should be re-sized to occupy the bottom quarter
of the screen, and then the vertical scroll bar should be dragged down until the
'AudioSignal' and 'AudioScaled' traces are visible. These traces can be 'frozen' by
pausing or stopping the simulation. Then the frequency can be measured by
noting down the times at which, say, peaks in the waveform occur, deducing the
period of the waveform from that, and hence calculating the frequency.

The instructor may wish to work through the formula linking sample rate
(number of samples taken per second), 'Waveform - period' (i.e. number of
samples per cycle of the wave,) period (in the 'Frequency calculation' - equals
physical period of the waveform i.e. time taken for one cycle) and frequency
(number of cycles generated per second) to give students confidence.

Testing the program on the hardware can use the on-board speaker this time. If
the 'Volume' control is turned too high, there may be audible distortion of the
signal.

25-40 mins

 8

Program 5 covers similar ideas to program 4, except that this time the
waveform, rather than the frequency is selected by switches. To allow that, the
Dashboard panel now has four Frequency Generators, outputting different
waveforms, and the switches are used to select which one delivers a signal to
the rest of the system.

The menu is contained in the 'timer_tick' macro, and selects which Frequency
Generator supplies the next sample for processing.

The 'Main', 'SPI_Init' and 'Output DAC' macros can be imported from earlier
programs.

Testing is done in two stages, as before, in simulation and with the hardware.
The 'Data Recorder' is set up and used during simulation as in the previous
program.

The DSP Output board allows easy connection to an oscilloscope for checking
the output signal waveform. The oscilloscope can be attached to the tag called:
• Audio In - to display the output signal from the DAC;
• Audio Gain - to display the output signal from the on-board amplifier;
• Audio Filtered - to display the output signal from the active filter.

20-30 mins

 9

The next section gives an overview of filters, subsystems which modify the
frequency spectrum of the signal in a pre-determined manner. The treatment
starts with the ideal frequency spectrum of four types - low pass, high pass,
band pass and band stop. The instructor should check that the students
understand what these graphs are showing.

This treatment does not cover any phase changes that may occur during
filtering, but the issue is mentioned.

A good check of understanding is to give students examples like those shown, of
a simplified frequency spectrum of a signal, the frequency characteristics of a
filter, and ask for the frequency spectrum of the result.

A low pass filter with appropriate cut-off frequency can be used to generate an
(almost) pure sine wave signal from a complex waveform, because it cuts out all
the harmonics, leaving only the fundamental (sinusoidal) signal.

The next section lists and explains common filter terminology. As with previous
examples, the instructor should take some time to ensure that all of these are
understood, before allowing the students to progress to the next program. A
particular stumbling block may be the use of decibels to measure gain and
attenuation. Most students will benefit from some worked examples on this
topic.

Finally, of particular relevance to analogue filters, there is a brief outline of
problems that occur in filter design. In reality, this is a huge topic, worthy of an
entire module devoted just to this.

 10

Program 6 explores the use of a low pass filter. The program itself is identical to
that of program 4, the sine wave generator, except that the signal from the
Frequency Generator is passed through a DSP Filter component, set to act as a
low pass filter. The role of the two switches is to set the frequency of the signal
passed through the filter to test its properties.

The 'Main', 'SPI_Init' and 'Output DAC' macros are identical to those used
earlier, and can be imported. The 'timer_tick' macro has an extra component
macro, using the 'FilterTick' macro, which applies the filter action to the current
sample from the Frequency Generator.

The configuration details list the properties of the DSP Filter component. They
include 'Type' (set to 'Low Pass' in this case), coefficient 0, (used to set the 'Cut-
Off Frequency') and the 'Sample Rate' (set to 8000 samples per second, as
usual).

The relationship between these is straightforward, but probably needs a few
worked examples to cement it firmly in the students' minds.
• The Nyquist Frequency is half of the sample rate, and so is 4kHz.
• The cut-off Frequency is given by the formula:

Cut-off Frequency = Nyquist frequency
 Coefficient
In this case, the coefficient is 20 and so the cut-off frequency is 200Hz.

Testing involves simulating the program along similar lines to those used in
previous programs, and then running the program on the hardware. In both
cases, the effect of the low pass filter should become apparent in comparing the
amplitude of the output when selecting a low frequency output on the switches,
with the amplitude for higher frequencies. As amplitude is directly related to
loudness, the loudness of the output should fall as higher frequencies are
selected.

25-35 mins

 11

This section focuses on implementing digital filters, but begins with a
comparison of the merits of analogue and digital filters.

Implementation touches briefly on two approaches - convolution, and the use of
difference equations. Both require high levels of mathematics to offer a full
treatment, and so here the treatment is succinct.

The extent to which the instructor extends the treatment depends on the
mathematical ability of his students. In reality, the complex maths is taken care
of in the depths of Flowcode, and so a comprehensive knowledge of the maths
is not needed to create programs using the DSP Filter component.

 12

Program 7 offers a view of the high pass filter, to complement program 6, and
the low pass filter.

The properties of the DSP Filter component are identical to those in the program
6, except that, here, it is configured as a high-pass filter. The symbol on the
Dashboard panel changes to show the new configuration. The cut-off frequency
is adjusted to illustrate the effect of the filter.

Most of the macros are identical to ones used earlier, and can be imported. The
difference lies in the way the Filter component itself is configured.

The testing regime is identical to that used in program 6, allowing the student to
contrast the performance of the two types of filter.

Where the instructor thinks it appropriate, the program could be modified to
investigate other filter types. Different groups of students could be given
different filter characteristics to investigate, with all results pooled at the end of
the exercise.

Step-by-step Guide to Flowcode flowcharts:

1. Open Flowcode :

 When the Flowcode application starts, you are presented with four options:

New project;

Open a template;

Launch Flowcode Help;

Open an existing Flowcode project.

Click on ‘New project - > Embedded Project’.

2. Select the target microcontroller:

 The ‘Project Options’ screen opens.

 Click on the ’16-Bit PIC’ tab, and then on the ‘Misc’ option, Select BL0132. Then click on ‘OK’

3. Add the icons:

 A new flowchart appears.

 If the ‘System Panel’ appears on the screen, delete it by clicking on the ‘X’ in the top right-hand

corner, or by opening the ‘View’ menu and de-selecting ‘System Panel’.

 Down the left-hand edge of the workspace is the strip of possible icons.

 Click and drag the ones you want to make up the flowchart .

4. Configure each icon:

 Double-click on each icon in turn, and use information like that given in the worksheets to complete

the configuration dialogue box. Click on ‘OK’ after completing each.

5. Open the Dashboard Panel:

 Open the ‘View’ menu, and click on the ‘Dashboard Panel’ option.

6. Add the components:

 Items such as switches, and the ‘Potentiometer (Slider)’ are found in the ‘Inputs’ toolbox.

 The LEDs, sounders and similar components are found in the ‘Outputs’ toolbox.

 Find the component you want and click on the down arrow just to the left of its name.

 Some components may be hidden, and require use of the ‘Search’ box.

 Select the ‘’Add to dashboard panel’ option.

7. Configure properties of components:

 Move the cursor over the component, and right-click the mouse.

 The ‘Properties’ panel for the component appears.

 The important one for these worksheets is the ‘Connections’ property, shown on the right.

 Click on the text alongside the ‘Connection’ item, (here “Unconnected”) and a diagram of the

 chosen microcontroller chip appears.

 Select the pin to connect the component by:

selecting the port and bit from the two drop-down lists;

or

clicking on the pin on the image of the chip.

8. Simulate the program:

You can test whether your Flowcode program works by simulating it ‘on-screen’.

To simulate a flowchart:

select the 'Run' option from the 'Debug' menu;

or

click the 'Run' button on the main toolbar (or press F5).

Flowcode will go into simulation mode and will start to execute the program in the flowchart. A red

rectangle indicates the next icon to be executed.

Simulations can be paused or stopped by selecting either the 'Pause' or 'Stop' options from the

'Debug' menu or selecting them from the simulation section of the main toolbar.

Alternatively, you can simulate the flowchart step by step, using the 'Step Into' function by pressing

F8. You can also 'Step Over' icons by pressing Shift+F8.

All these options can be accessed from the 'Debug' menu or by clicking the buttons on the main

toolbar.

9. Save the flowchart:

 Flowcharts must be saved before they can be downloaded to the microcontroller.

 To save the flowchart:

select either the ‘Save’ or ‘Save As’ option from the ‘File’ menu;

or

click the button on the main toolbar.

10. Compile the flowchart and transfer it to the chip:

 The next step is to compile the Flowcode program, (convert it into machine code,) and then

transfer it to the microcontroller.

 To do so:

select the 'Compile to Chip' option from the 'Build' menu;

 or

click the ‘Compile to Chip’ icon on the toolbar.

11. Test the program using the simulation or the hardware.

