

Systems, signals, DSP, FFT

Systems and Signals

Teacher's notes

Learning objectives

Systems and Signals

On successful completion of this course, the student will be able to:

- explain what is meant by sampling an analogue signal;
- describe the trade-off between sample-rate and file size;
- explain the meaning of the term 'quantisation error';
- explain the significance of Nyquist's theorem to sampling an analogue signal;
- describe what is meant by 'aliasing' in connection with sampling a signal;
- describe the following techniques:
 - Analogue-to-digital conversion;
 - Digital-to-analogue conversion;
- create a 'heartbeat' flashing LED to show that the program is running;
- use an oscilloscope to observe the waveform of a signal;
- use a spectrum analyser and analyse the resulting trace;
- explain the need for analogue-to-digital conversion when processing signals;
- state the meaning of the term 'resolution' applied to analogue-to-digital conversion;
- count up using binary numbering;
- interpret voltage measurements to obtain the quantisation 'step' voltage;
- describe the factors that determine the size of the quantisation 'step' voltage;
- identify three common sources of electrical noise;
- distinguish between 'white' noise and 'pink' noise;
- describe the significance of signal-to-noise ratio (SNR);
- give two ways in which SNR can be increased;
- state the meaning of the term phase difference applied to two sinusoidal signals;
- describe the use of an 'X-Y' plot to identify this phase difference;
- change the configuration of a DSP wave generator to adjust the frequency and phase of the signal produced;
- use DSP blocks to add or subtract two signals and output the result;
- state the meaning of the term 'wrap around' and explain how it happens for a system using 'signed int' data type;
- outline the significance of the Fourier theorem to signal synthesis;
- describe how a square wave can be made from an infinite series of sinusoids of appropriate frequency and amplitude;
- distinguish between full Fourier Transform and Fast Fourier Transforms;
- state one advantage of digital over analogue filters;
- distinguish between the effect of a low-pass and high-pass filter on a noisy signal.

Instrumentation

Systems and Signals

Throughout this course we have used a Picoscope. This is a PC based instrument that includes:

- Oscilloscope
- XY plotter
- Spectrum analyser
- Arbitrary waveform generator

You don't have to use a Picoscope - there are man alternatives: separate instruments and other manufacturers of PC based instruments like Voltcraft. However the Pico scope works very well: in particular the dual views that include both Oscilloscope and Spectrum analyser are very good.

This image shows Oscilloscope, Spectrum analyser and Signal generator instruments on a Picoscope.

For each experiment we have drawn the connections simply in Excel and given an image that shows the configuration of the system as well as the settings on the Oscilloscope.

Equipment needed

Systems and Signals

Sysblocks experimentation	on p	ane	əl	• • Sy	sblocks	⊷• ;	Π	h		X BL8533
				Chan Chan Chan Chan Chan Chan	Digit nel 0 Line nel 1 Line nel 2 In 1 nel 3 In 0 nel 4 Line nel 5 Line Power	al pot e in right ga e in left gain gain e out right g e out left ga =6VDC	ain n gain ain			
	- And				DIC32 co	anactions				_
	VII me	ter 1	VIIm	eter 0	1032 00	loo	uts		Switches	& I EDs
	VU-A0	RD0	VU-B0	RE0		LINE-L	RB2		LEDO	RD13
	VU-A1	RD1	VU-B1	RE1		LINE-R	RB8		LED1	RK7
B (Mar)	VU-A2	RD2	VU-B2	RE2		INO	RB6		LED2	RA6
	VU-A3	RD3	VU-B3	RE3		IN1	RB4		SWO	RK6
	VU-A4	RD4	VU-B4	RE4	DAC 1	outout	DAC 0	outout	SW1	RC13
	VU-A5	RD5	VU-B5	RE5	DACAO	RHO	DACBO	R.IO	SW2	RA7
	VU-A6	RD6	VU-B6	RE6	DACA1	RH1	DACB1	RJ1		
LCD display Host device	VU-A7	RD7	VU-B7	RE7	DACA2	RH2	DACB2	RJ2	Enco	ders
USB	E-bloc	ks A	E-blo	cks B	DACA3	RH3	DACB3	RJ3	ENC1A	RGO
	E2BA0	RG9	E2BB0	RC2	DACA4	RH4	DACB4	RJ4	ENCIB	RGI
Line out right	E2BA1	RE8	E2BB1	RC3	DACA5	RH5	DACB5	RJ5	ENCOR	RG12
	E2BA2	RB11	E2BB2	RD9	DACA6	RH6	DACB6	RJ6	LING2D	1013
IN1	E2BA3	RB10	E2BB3	RD11	DACA7	RH7	DACB7	RJ7	Gr	ove
Line in left microcontroller	E2BA4	RB9	E2BB4	RF5	DACA8	RH8	DACB8	RJ8	SCL	RA2
	E2BA5	RF13	E2BB5	RD10	DACA9	RH9	DACB9	RJ9	SDA	RA3
	E2BA6	RA0	E2BB6	RF2	DACA10	RH10	DACB10	RJ10		
	E2BA7	RE9	E2BB7	RF8	DACA11	RH11	DACB11	RJ11		
	E2BAD	RB12	E2BAD	RK5	DACA12	RH12	DACB12	RJ12		
E-blocks VU LEDs, User	E2BAC	RB13	E2BAC	RK4	DACA13	RH13	DACB13	RJ13		
ports LEDs, switches and encoders	E2BAM	RK0	E2BBM	RC1	DACA14	RH14	DACB14	RJ14		
					DAGAAE	TO LLANT.	DIODIC	D 145		

To deliver this course you will need:

Picoscope or other instrument which includes:

- Oscilloscope
- Spectrum analyser
- Arbitrary waveform generator
- XY plotter

And the items in the table which are included in Matrix product code BL8386 - Standard Sysblocks Experimentation panel.

Qty	Code	Description
1	HP4039	Tray Lid
1	HP2045	Shallowtray
1	HP8600	Crash Foam
1	SUB 8801	Standard sysblocks panel with PCB
1	HPUSB	USB lead
3	BL4585	BNC-SMA adaptor
2	BL6889	SMA to SMA lead
1	BL6374	BNC splitter
1	HP6401	3.5mm jack speaker
1	HP6400	Stereo 3.5mm plut to plug lead 1m

	Notes
Worksheet 1 Sampling	Concepts involved: sampling sample rate file size quantisation interrupt The program takes the sinusoidal signal from a source such as the Picoscope AWG and samples it at various sample rates, set by encoder 'ENCO'. Students may need help in setting up the AWG or other signal source. Students are asked to listen to and compare the quality of what they hear. It may be desirable to use headphones, rather than speakers, depending on how many groups are involved in the activity at the time!
	Typical results are shown below, together with the AWG settings panel: Image: Contrast of the state of the sta

	Notes
Workshoot 2	
Worksheet 3	Concepts involved:
Analogue to	analogue signal digital signal A to D conversion
uigitai	binary numbering ADC resolution
conversion	First of all, the input is an analogue signal in the form of a rising ramp. The program
	LED array VII' Students may wish to video the sequence in slow motion to convince
	themselves that it produces a binary sequence
	The second part of the investigation uses the AWG to input a steady DC signal. Again, students may need guidance in setting up the AWG to do this. The aim is to produce a graph from which they can determine the resolution of the ADC.

	Notes
Worksheet 5 Noise	Concepts involved: <i>sources of noise noise vs distortion noise floor white noise pink noise</i> The activity could begin with a discussion about the meaning of noise and common sources of noise. The students could be asked to research the difference between 'white' and 'pink' noise. Truly 'white' noise is rare and is difficult to generate. The DSP noise generator uses 'random' numbers, but truly random numbers are equally difficult to generate! The spectrum analyser trace of the noise signal should show a signal spread equally across a range of frequencies. Computer generated noise will never be equal across the spectrum.
	20 10<
	᠉ ᠁ᢅᠡᢧ _ᡆ ᢧᠭ᠋ᠧᢧ᠋ᢩᠺᡁᢊᡰ᠊ᠧᡔ᠋᠋᠋᠋ᡙ᠒ᡁᡗᡊᡗ᠋ᠬᠧᡘᡘᠧ᠋ᡅᠺᡢᢞᠠᢛ᠉᠋᠋᠋᠋ᡞ᠋ᡅᠺᡢᠰᡵ᠉᠋᠋᠋ᡢᡅ᠋᠋᠋᠋᠋᠋ᡢᡘᢦᢇ᠋ᡞ᠈ᡘ᠋᠋ᡕ᠉ᠺ᠕᠇
	ייי אווי די איז און איז די איז און איז גער איז
	-1.6 -2.D -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.
	Spectrum L -10 -10 -12 -11 -12 -12 -12 -12 -12 -12 -12 -12 -13 -12 -14 -12 -15 -12 -16 -12 -17 -12 -18 -12 -19 -13 -10 -23 -10 -23 -13 20 -23 -23 -23 -23 -23 -23 -23 -23 -23 -23
	Spectrum view of 'white' noise. (Scale is in MHz)

	Notes
Worksheet 9 Level detection	NotesConcepts involved:peakamplitudetroughAC rmstrue rmsThe investigation could be introduced with a review of applications using electricalmeasurements like those taken here. The student varies the amplitude of the signal,using an encoder and views the results both on the oscilloscope trace and on the LCDscreen.The challenge swaps the internally generated signal for an external one. The studentsinvestigate it in similar fashion.This program uses the 'signed int' data type, mentioned in worksheet 8. The outputport component uses 'autoscaling' meaning that a measurement of -32768 gives anoutput of approximately 0V, a measurement of +32767 gives 3.3V (the full scale value)ue) and a measurement of zero produces a mid-point value of 1.65V

	Notes
Worksheet 12 Digital filter	 Using FFT reduces the mathematical depth. It ignores those frequency components that contribute little to the outcome. The result can reduce the number of computations by a factor of 10 in some cases, speeding up the process significantly. Some students may be puzzled by the oscilloscope trace. In particular, the horizontal axis appears to be a time axis, graduated in ms. It may even display negative times. The explanation is given in the worksheet. To summarise it: the horizontal axis shows the time at which the sample appeared at the output; the buffer size (number of samples) is initially 512; the number of frequency bins is always half the number of samples; the initial sample rate is 51.2 kHz, giving a Nyquist frequency of 25.6 kHz; the frequency bins split the spectrum range up to the Nyquist frequency into equal values. In this case, 25.6 kHz / 256 bins gives 100 Hz range for each bin.
	Typical results are shown below: $\int \frac{d}{d} \int \frac{d}{d} \int$
	eBu eBu 90 90 720 720 -320 -320 -350 -350 -660 -660 -570 90 -790 -90 -90 -90

Systems and Signals

14 12 23 First release