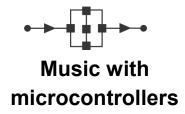
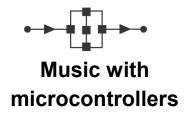
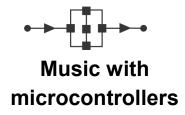


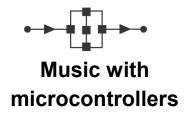
Music with microcontrollers

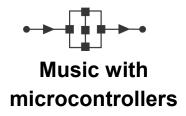



Learning objectives

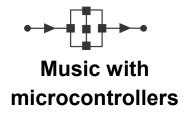

On successful completion of this course, the student will be able to:

- explain the significance of the terms 'macro' and 'component macro';
- describe the following techniques:
 - Analogue-to-digital conversion;
 - Digital-to-analogue conversion;
- create a 'heartbeat' flashing LED to show that the program is running;
- describe what happens when a programming interrupt is called;
- create and configure a timer interrupt;
- use an oscilloscope to observe the waveform of a signal;
- create and control the timing of an electronic 'echo';
- control the frequency spectrum of an audio signal using a filter;
- distinguish between the behaviour of a low-pass, a band-pass and a high-pass filter;
- explain why a piano, playing 'middle C', sounds different to a violin playing 'middle C';
- configure a summing block;
- use iterative techniques to produce a repeating echo;
- modify a program so that the amplitude of repeated echos dies away progressively;
- explain what is meant by reverberation;
- describe the function of an audio mixing desk;
- draw a block diagram of an audio mixing desk;
- describe the function of an audio equaliser;
- describe what is meant by sampling and sample-rate;
- relate the significance of sample-rate and signal frequency.

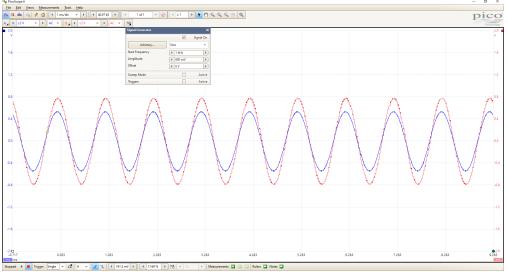


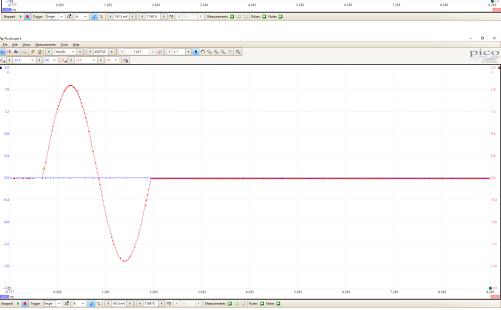

	Notes							
Worksheet 3 The 'Click' generator	The big difference between this and the previous program is the input device used. In program 1, an external source, such as the 'AWG' on a 'Picoscope' device was used to generate a signal via an input connector. In this case, the signal is generated internally. Once again, this is a core program that will be re -visited and extended later. Instructors could distinguish between 'byte' and 'string' data types and may							
	choose to explain the role of the Decision components in the program. They could point out that a short-lived burst of sinusoids will sound to the human ea as a 'click'.							
Worksheet 4	Concepts involved: amplitude, volume							
Control the Output	This program is a development of program 1, the 'In and Out' program. The input is generated externally from a source such as a 'Picoscope AWG'. A second output port, connected via a 'Scale' block, is used to demonstrate the effect of controlling the output. The original output port is unaffected. This dif- ference should be apparent when students listen to each output channel sepa- rately or study the traces on the oscilloscope. The effect of the 'Scale' block depends on the 'Initial Integer Scaler' value. This is the focus of the 'Challenge'. Students could explore the other settings on the 'Scale' block, such as the 'Scale Type'.							
Worksheet 5	Concepts involved: tone, frequency spectrum, types of filter							
Control the Tone	This program follows a similar pattern to the previous one except that the DSP Scale block is replaced by a DSP Filter block, configured to be a low-pass filter with a 'Coefficient 0' set to '10. Testing follows the same pattern as for the previous program. Again, it can be instructive to listen to each output channel separately, if possible. The 'Challenge' looks at the effect of changing the filter's configuration parame- ters.							

	Notes
Worksheet 6 Anatomy of an Echo	 This program generates an artificial echo by adding together the 'click' from the system tested in program 2 and a delayed version of the same signal. As a result, every 'click' produces two copies, one following shortly after the other. The 'Challenge' invites students to change the delay by varying the 'Delay Count' properties. Using a 'click' produces a clearer echo, though students are encouraged, in the 'Challenge' to observe what happens when music is used as the input (through an 'InputADC' block. Addition is carried out by a DSP Math block, (which can also subtract, multiply, divide and carry out a range of other mathematical operations.) Students could explore the effect of using other mathematical operations.
Worksheet 7 Multiple Echoes	This program incorporates DSP blocks from the previous three programs to produce a (theoretically infinite) series of echoes using an iterative process. It is tested in the same way as the preceding program. The 'Challenge' combines activities from the three previous programs.
Worksheet 8 Reverberation	 This takes the process used in program 5 one stage further, using three delay blocks to produce three copies of the original 'click'. These are combined using a DSP Adder block. The combined signal is then fed to the Math block as before. By this stage in the course, the instructions are deliberately becoming less granular, leaving more for the students to work out for themselves. Where there are problems, they could be shown the 'official' version of the program.



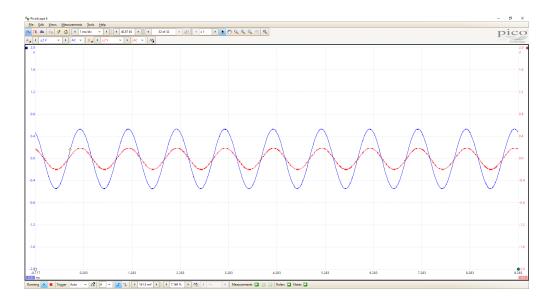
	Notes
Worksheet 9 Mixing signals	This program explores a common task in music technology - combining to- gether signals from a variety of sources. The instructor could demonstrate a commercial mixing desk to introduce this topic, pointing out the various controls that the desk offers. Initially, the inputs are generated internally using DSP 'Wavegenerator' blocks. This delivers tighter control than using relatively random music sig- nals. The three inputs are combined using a DSP 'Adder'. The 'desk' uses the two encoders to select input and assign a gain value to it. Their appetite whetted, students are invited to experiment with a larger scale mixing desk, which incorporates the ability to input several music streams.
Worksheet 10 Equalisation	Concepts involved: equalisation Equalisation is a more comprehensive form of tone control. The instructor could expand on what equalisation means and give practical examples. This system uses what, by now, should be familiar components and testing scheme. It offers few instructions but gives the students sufficient infor- mation for them to create the program. Again, where there are problems, they could be shown the 'official' version of the program.
Worksheet 11 Sampling	Concepts involved: sampling, sample rate, Nyquist's theorem This topic is central to the task of creating quality music files. In analogue recording, the entire audio wave is used to create the file. In dig- ital audio, the input signal is sampled periodically. Put simply, its signal volt- age is measured from time to time and is converted to a digital numbers which are stored in the file. The rate at which these measurements are taken determines the quality of the recording. The frequency of the sounds being recorded also has an influ- ence on this. This leads to the Nyquist sampling theorem

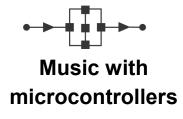

	Notes
Beyond this	Instructors may wish to incorporate additional worksheets from the
course	'Systems and Signals' course.



Worksheet 2 - in and out

blue = input signal Red = output signal

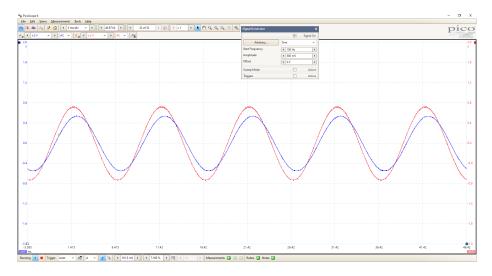

Worksheet 3 - click generator

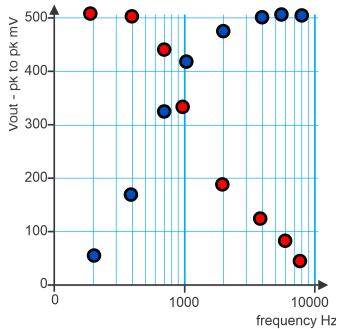


Red = output signal

Worksheet 4 - control the output

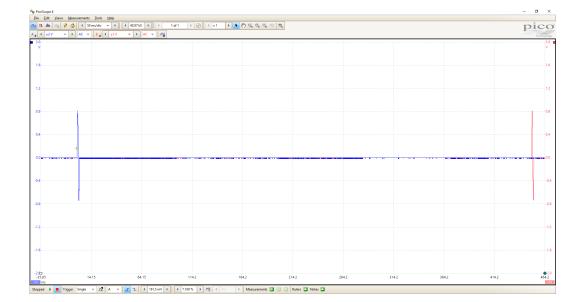
blue = generated signal Red = signal / 4



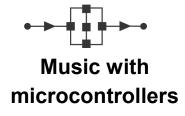

Worksheet 5 - control the tone

blue = input signal Red = output signal

Note the phase shift



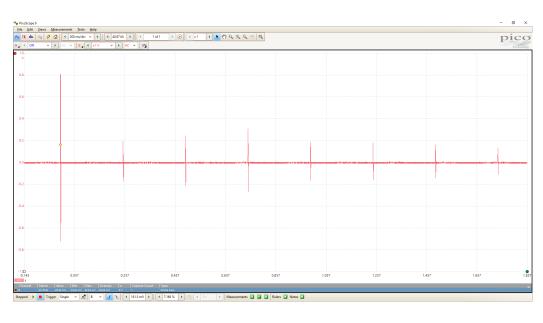
f Hz	Low pass mV	High pass mV		
100	511	63		
300	505	192		
600	425	325		
1000	326	416		
2000	190	487		
3000	131	503		
5000	80	510		
8000	50	510		



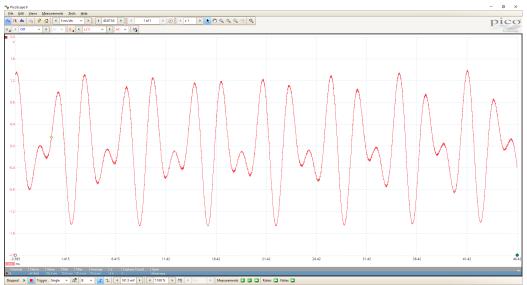
Worksheet 6 - anatomy of an echo

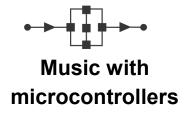
Blue = initial signal Red = echoed signal

Copyright 2023 Matrix Technology Solutions Ltd.

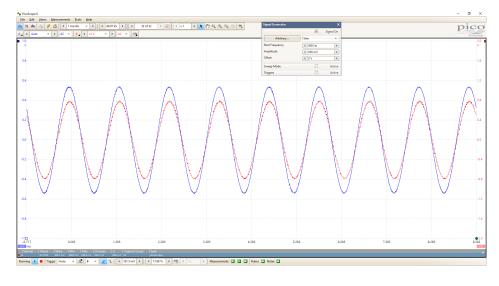

Worksheet 7- multiple echoes

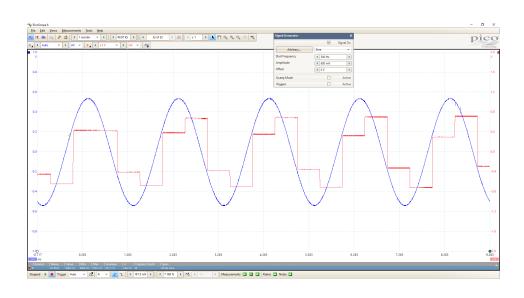
Red = output signal


л ш 📖 🦻 🖓	surements Jools Help	4 40.87 k5 F 4	0 of 0 🕨 🕢 🕴 x 1) k 🖱 🔍 🔍 🤊 🖻					1	pice
		- • AC - NY							1	Tachard
0										
v										
8										
5										
	4									
				1						
0 										
-										
5										
	1									
.										
.072	0.028	0.128	0.228	0.328	0.428	0.528	0.628	0.728	0.828	
1	alaa Maa Max Aa	veraqe o Capture Co 34 mi o V	unt Sono							

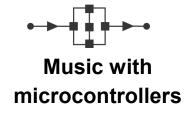

Worksheet 8 -Reverberation

Blue = initial signal Red = echoed signal


Worksheet 9 - Mixing signals


Worksheet 10 - equalisation

Blue = input signal Red = output signal



Worksheet 11 - sampling

Blue = input signal Red = output signal

Version control

30 11 23 first release