Flowcode 7 — How to Make Your Own Components

If you are interested in making your own Flowcode components based upon devices which are not
currently included in the FC7 component library, then this guide will show you the journey | have taken
to build my own FC7 component. This enabled me to use any microcontroller using the FC7 graphical
programming language to control my new device. The problem is, where do you begin to get the
building process started. | have chosen this very simple device ONLY to illustrate the component
building steps involved, and is my visualisation of Flowcode’s inner workings.

This device is a very simple ASK - RF transmitter and receiver which uses the 433MHz band (amplitude
shift keying). These devices (transmitter and Receiver modules) have only one data connection each -
plus power. Data is applied as a data stream — 1 Bit at a time and 8 Bits per packet. No clock pin or
chip select — nothing, simple. So, how can | control it using Flowcode?

| could simply use the R$232 port, but what if | wanted to use any
available micro-controller, or use software only. That’s to say,
some controllers do not have a RS232 port. This is where the
power of FC7 comes in to play. If | built a component using FC7
internal tools, | will be able to attach this device to any controller
and use either the hardware on the chip or let FC7 build a
software option to control it. Building my own component will
allow me to include all the programming logic | need to control this device, wrapped up in one GUI
component stored in my component library, brilliant, where do | start?

Well, this is what | have discovered is possible with FC7.

To get the component building process started, it is worth pointing out now what | believe Flowcode
has under the HUD. This way, you will begin to understand what | did and how it related to how the
FC7 technology works.

First — FC7 has - GUI; CAL API (Graphics User Interface; Application programming Interface and Code
Abstraction Layer).

Flowcode 7 allows those on screen graphical symbols to be used for both Simulation (the visual effects
as a program is run before loading to the chip) and Conversion to micro controller specific code, plus
all of the programming logic you need to control the device. However, because there are many
controllers, the conversion process goes through several stages or cross compilers. So, our component
must follow a set of rules to allow this multi task environment to work correctly. Shown below is my
illustrated view of those links within FC7.

Flowcode has all the tools you need to build your own functional graphical components, that can be
saved to a library, ready to be inserted into your programs. The components you can build include LCD
displays; Stepper motors; Communication devices and just about anything you can think of, currently
available on today’s market. However, they need to be programmed using Flowcode’s powerful API
and it needs to know how to communicate with your new component. This is where Flowcode's
extensive library of tools can be accessed to help build your graphical GUI image/footprint for your
component.

Shown below is a graphical view of what | think lies beneath Flowcode interface.

Flowcode uses technology layers (API; CAL; GUI) help to organise and keep track of the various
features of the target controllers and the hardware that each controller has (memory; pin
connections; RAM; EPROM;UART’s etc). Flowcode will then take what features you want for your
component and begin to link the technologies together using its built-in tools.

CAL - component

CAL Components

Simulation Components

Component Libraries/Helpers

STEP 1 — choose your CAL component first!
The component building process begins with the — CAL (code Abstraction layer).

(The CAL (Code Abstraction Layer) components are designed to simplify the creation of controller
programs or other related components.

- They encapsulate the internal functionality of the supported micro-controller device features.
- In this way your Flowcode program, or component, uses a consistent interface to the
functionality irrespective of the actual target micro-controller device.

It does sound a bit geeky, but it is simply the start of our first Flowcode building block for our new
component. (there are other base CAL’s available such as — gLCD; ADC etc)

Example -If my component needs to send data in a bit stream, | have the choice of using an UART —
RS232 or SPI or Software (FC7 can replicate both using software techniques!) — both are serial
interfaces and both have their own CAL.

Here are a few the generic building blocks - CAL’s available in Flowcode: (I'll be showing you where to
find them later)

Peripheral CAL’s

{::E A low-level implementation giving direct access to the CAL
ADC Analogue-to-digital converter

{:ECAN Low level routines for controlling the CAN interface

{::E A low-level implementation giving direct access to the CAL
EEPROM EEPROM memory

i::-EIZC Chip Abstraction Layer for Two Wire 12C Communications

{::E A low-level implementation giving direct access to the CAL
PWM Pulse-Width-Modulation hardware

{::E A low-level implementation giving direct access to the CAL SPI -
SPI Serial Communication hardware

{::E A low-level implementation giving direct access to the CAL
UART RS232 hardware

Begin by using one of these components to start the building process:

Go from this base component:- {:E to this GUI component:-

The final GUI component has all the Macros/functions and programing logic you need, wrapped up in
a nice looking graphical component that controls your new device.

STEP 2 — Start building your component

Launch FC7 and start a new project. It does not matter what chip you use (8Bit PIC etc.), but it may
make sense to start with the chip you intend to be using with your component. The chip configuration
is not required as nothing about the chip is used when your component is created, only the links within
the CAL and the API are used to build your component. Begin by laying out your FC7 screen like this: -

LAEileEREpOoO*+TRE

Set up the view for- Project explorer; Component search; 2D: Dashboard Panel; Start Page and Properties

https://www.matrixtsl.com/wikiv7/index.php?title=Component:_ID_e77a4e40_e0df_431a_98f8_7ae4d8ebfbeb
https://www.matrixtsl.com/wikiv7/index.php?title=Component:_ID_8a1cca2f_7df1_4b3a_b24b_ca575fe84348
https://www.matrixtsl.com/wikiv7/index.php?title=Component:_ID_18738948_277c_4ed2_8be0_becc616cb0b9
https://www.matrixtsl.com/wikiv7/index.php?title=Component:_ID_ed3a5141_43bb_43e0_86b0_2243fd1147ca
https://www.matrixtsl.com/wikiv7/index.php?title=Component:_ID_068080a0_b949_4a7e_b370_c45430e0c9de
https://www.matrixtsl.com/wikiv7/index.php?title=Component:_ID_c67171df_0ad6_4b11_8361_cfe14b072847
https://www.matrixtsl.com/wikiv7/index.php?title=Component:_ID_91b64b1d_b8b2_40f1_b073_e953a91fa234
https://www.matrixtsl.com/wikiv7/index.php?title=File:Component_Icon_e77a4e40_e0df_431a_98f8_7ae4d8ebfbeb.png
https://www.matrixtsl.com/wikiv7/index.php?title=File:Component_Icon_8a1cca2f_7df1_4b3a_b24b_ca575fe84348.png
https://www.matrixtsl.com/wikiv7/index.php?title=File:Component_Icon_18738948_277c_4ed2_8be0_becc616cb0b9.png
https://www.matrixtsl.com/wikiv7/index.php?title=File:Component_Icon_ed3a5141_43bb_43e0_86b0_2243fd1147ca.png
https://www.matrixtsl.com/wikiv7/index.php?title=File:Component_Icon_068080a0_b949_4a7e_b370_c45430e0c9de.png
https://www.matrixtsl.com/wikiv7/index.php?title=File:Component_Icon_c67171df_0ad6_4b11_8361_cfe14b072847.png
https://www.matrixtsl.com/wikiv7/index.php?title=File:Component_Icon_91b64b1d_b8b2_40f1_b073_e953a91fa234.png
https://www.matrixtsl.com/wikiv7/index.php?title=File:Component_Icon_91b64b1d_b8b2_40f1_b073_e953a91fa234.png

It may be a bit tight on some screens but once you get building underway you can close some of the
panels.

Component Search — use this to find your chosen CAL. If you want to follow my example, search for UART and
place onto your 2D Dashboard. This small graphic image is never used to create your image of the
component, only the settings/properties and parameters it contains — it’s a CAL component, meaning FC7 uses
it to store base component settings and functions. So, it will be there during the whole component building
process, even when exporting your finished component, but never displayed with your finished component.

That’s the base component (bottom Layer), now the component you want to see on the screen when your
component is finished. Search for Flasher (top layer Component) and place it onto your 2D Dashboard. If you
look closely at this graphic and click onto it, the Properties shows it has some features that you can control: -
Label the name that will be shown on the component; ICON image (that’s the black square in the middle, you
get to place any icon you wish to make it resemble what your component will do); flash_time this is for
simulation purposes when it is used in your programs, any Macro which calls your component, you can make
the appropriate LED flash. You can now close the Component search.

Well, what you have done so far: -

e Started with base CAL - containing all the files at the bottom layer
e Place the top GUI image at the top layer — containing the simulation files

What we are about to do now, involves linking everything together. It involves building your
component using MACRO’s which are available at the CAL level (those function files and API system
variables) and bring them into use for your component. FC7 comes with other Components you can
use such as switches; led’s; LCD; gLCD’s etc to enable you to build a whole range of new components.
| have not used any of these yet, but it would be good to explore these later.

STEP 3 — Component Properties/Parameter/Events

Now we start with those all important component properties contained within the UART CAL. Begin by clicking
on the UART CAL to list what properties are contained within it and displayed in - Properties

g
o
*

*
o
Q
-

o8N

What we see here is only a basic set of properties, however, FC7 has a valuable tool you can use to
inspect in much more detail what is contained in this CAL, we’ll look at that tool later. For now, at the
top of the list of the component properties are — CHANNEL. It contains a Handle Properties. This is a
linking event that we need to bring across to our component.

On the other side of the screen is — Project explorer

You will find a menu at the top labelled <EV > click on this to display a list of options available.

https://www.matrixtsl.com/wikiv7/index.php?title=File:Component_Icon_91b64b1d_b8b2_40f1_b073_e953a91fa234.png

This should display the following: -

The <EV> parameters contains what we need to control our

component. We will store these setting in the following macro
called Ev_Property

Under the heading Components double click the option —
Property — select add new

What this is going to do is to create an event MACRO which will
contain those properties and parameters. The event can then
be placed in our component. That way, the
events/parameters/properties can be selected and used to
build our component.

g
1o}
D
*
>
e
o
-
-
-
@
=
s
=

Click on the Add New and accept the default setting which
are: -

e Macro name - Ev_Property
e Return type — ULONG

Your Macro should look like this: -

Now click OK

Now, if you look at your Start page you may
still only see Main displayed. If that is true,
then from the menu Macro at the top,

select from the drop-down menu — Show as
Flowchart and click Ev_Property

Now your Start page will have the Ev_Property Macro shown.

Our component will now have the correct Properties and the correct RETURN for the event ready to
be included into your component. That’s our first link done. Don’t worry if nothing is making much
sense thus far. It is only important that you know this needs to be done to begin building our
component. We have placed a link that is needed to take information from the bottom CAL layer to
make it possible to pick what we need for our new component.

STEP 4 — Selecting Our Parameters and properties

Our screen should look like this shown below. Make sure our new component is selected, just click
anywhere inside of the 2D Dashboard to make sure. This way, we know we are working on our
component. You will notice our properties list is empty.

Peo¢tenal

Click on the Properties down arrow and select Add New

This will give you the following

The cosmetic name — enter Channel

and the property type — Fixed list of Ints

Property variable — CHANNEL (must be upper case)
Click OK

The cosmetic name is literally cosmetic but the Property variable is
case sensitive — be careful!

What we are about to do, is bring across all the instances that are associated with the property called
‘CANNEL’., for which there is two (these are the properties for the R$232)

- Hardware (fixed by the system) Software (we get to pick which pins on the controller to
use).

You can now check the following by clicking onto the UART CAL, and under properties called Channel
you will see two option Software and Channel 1. It is these properties we need to pull across. If we
compare that with what we see on our components properties under ‘Channel’, the list is empty.

The problem is though, whatever we do with our component in the way of changes, these changes
MUST be transferred back to the base CAL component. This is because the base component is used
by the APl and are therefore Dynamic.

Don’t worry if this sound odd, as long as you know this to be true, it will make sense of what we are
about to do next to get that dynamic transfer of information, from the CAL based component to our
component and any changes we do with our component are transferred back to the based CAL
component. In other words, it must not be possible for our component to be in a different state to the
base component. To get this dynamic information flow, there is only one way, coding.

STEP 5 — Building the dynamic properties list

To code the Ev_Property Macro, make sure you are working inside this Macro from the start page.
This Macro is invisible to the end user when the component is finished. Any coding we do here, is
never compiled to the chip, it is only used to enable the end user of the component to control its
properties and other settings.

From the Flowcode ICON’s on the left, select Simulation and drag it across as shown below. When you
click onto it, you will see both of the following components — the base cal_uartl and the Flasher.

Select the - and along the top of the Macro, select _ as shown here;

g
o}
0]
*
L
©
]
-
-
-
=]
“F

Select the option — -

The Parameter type you need to select from those that are
associated with GetList. If, like me you have no idea of what
they should be, simply place two quotation marks and click
between them. Now, when you type a capital letter such as “C”,
a list appears giving what it expects to be type in this text field —
select “CHANNEL”

Now we need somewhere to store that information. In the
Return Value, we will create and use a Local variable
called .tempstring

(if it places [20] at the end, remove them using edit)
Parameter Name STRING “CHANNEL”
Return Value

- Local variable .tempstring
Now we need to place that in the Return value box

You can get the Local variable by using the Full Stop

It should then appear. If not, you need to create a local
variable by that name to store the information you
need.

Now, the Simulation Macro for cal_uartl and has GetlList and the parameter called CHANNEL with
the return value called .tempstring containing all the information you need for your component.

Now we need to define the Functions for the above, in other words, what we need to do once we
have the parameters stored in the
.tempstring.

Simulation
tempstring=cal_uart1::GetList"CHANMNEL")

STEP 6 — Define the Functions for the CHANNEL

We now need to use the variable called .tempstring

We don’t know what is in it, however, we want to extract - Filter what it contains and place it in our
component. If it is changed, then the contents of the string will change making it possible to put
these changes back into the base CAL. Our code to
do this will look like this:

Simulation

Insert three more Simulation code icon’s and set tempstring=cal_uart1::GetList’ CHANNEL?)

them as shown below:

Simulation
=:Component Property SetFilter(this,

e Make sure you click anywhere inside of the 1 "GHANNEL",
tempstring)
2D Dashboard Panel to work on your g
component

tempstring=::Component Property GetValue(this,
. . "CHANNEL"
Make sure the correct TAB Functions is selected to

make the settings you need. Simulation
cal_uartl:SetValue("CHANMEL",
tempstring)

1 - Under the Functions TAB- Select Component — Property —
then SetFilter and for each of the following:

Handle HANDEL — this
Property STRING - “CHANNEL”
Value STRING - .tempstring
And then OK

What this Macro does, is to filter out whatever the CAL settings
are for the CHANNEL from the .tempstring

2 — Next Simulation ICON, Under Functions —

Component — Property i
— select GetValue and for each of the following I
Handle HANDLE - this

Property STRING - “CHANNEL”

Return Value .tempstring

Click OK

Parameters

1 Handle
% Property

3 - Make sure Simulation TAB is selected and from the
option select the cal_uartl image first
Now select Setvalue and for each of the following

Properties: Macro

Display name:
Simulation

Name STRING - “CHANNEL”
Value STRING -.tempstring
Click OK

You now have four Simulation code ICON’s which

1: copy what's in the bottom CAL layer using tempstring

2: places it in our top GUI layer for our component using Filter
3: copies whatever changes have been made in our components

4: places these changes into the bottom CAL layer using tempstring.

STRING

Functions

Jlations

[Corsole et + 8

To make this work, you
need to place a Macro call
in the Main Start Page and
select the macro
EV_Property

This will make the
CHANNEL selection
Dynamic

Y. |
N

g
o
* .
*
e
o
-

LEleEw

Now we need to put in those physical connections to the Chip. This has been made much easier with
FC7. Simply click Properties and select add new. For the Cosmetic name RX and variable name RX. The
Property type, select Single Digital Pin as shown.

Do the same for the TX.

The cosmetic name is exactly that — cosmetic!

If you press RUN, then when you select your component you will see the options of Channel 1 or
Software. If you select the software option you will be able to select which pins of the chip are used
for the RS232 port. Do that and then click onto the Cal_uartl base component icon. Here you will see
that the pins match what you have selected by your component. Remember though, you are
controlling the connection of the base CAL from your component only!

STEP 7 — Now the Baud Rate

We can repeat the above procedure to get the Baud rate options for our component. Remember,
this procedure consists of: -

e From the CAL — Getlist
e Our component — Setfilter
e QOur component — Getvalue

e Base CAL - Setvalue

Bring four more simulation icons’ across to the EV_Property macro and set them as shown below: -

Simulation

1 tempstring=cal_uart1:GetList("BAUD_LIST" [
T R ——
Simuision
Simulation Comaanent Fropart SarFertin,
=Component. Property.SetFilter(this,
"BAUD_LIST", siruiaion
2 tempstring) - msting=:ComponentFroper GutVaustiia
s ST
Simulation
tempstring=:Component.Property. GetValue(this, - B ol omcauar-Gatnaup_LsTy
3 "BAUD_LIST) i
\ - Y —
EAUD.LIST
mparing)
Sirmulafion
cal_uartl:SetValue("BAUD_LIST, e it
4 tempstring)

1- Under the Simulation TAB-

Select cal_uartl

Property — then GetList and for each of the following:
Name STRING — “BAUD_LIST”
Reurn Value STRING - .tempstring

Make sure you use the under-score key “_”
And then OK

Select our component by clicking anywhere inside of the 2D
Dashboard Panel

2 - Under the Functions TAB

Select Component

Property — then SetFilter and for each of the following:

Handle HANDEL — this

Property STRING - “BAUD_LIST”

Value STRING - .tempstring

And then OK

Select our component
3— Next Simulation ICON, Under Functions TAB :
Component

Property

select GetValue and for each of the following

Handle HANDLE - this

Property STRING - “BAUD_LIST”

Return Value .tempstring

Functions

Functions

bowe] 70D | sound s Faiatr e

erts [0 Functions

4- Make sure Simulation TAB is selected and from the option —
select the cal_uartl

Now select Setvalue and for each of the following Corourects Il St Frcis
Name STRING - “BAUD_LIST”
Value STRING -.tempstring
Click OK
You can check that everything is working ok, by clicking on IEEREEZD g
the Baud rate label under the cal_uartl and select Expose. s G LY
B Component
This will reveal the baud rate in your component. Now when B roptes

you change the baud rate the base CAL UART baud rate will
change to the value you have selected.

BAUD_LIST 1200

What we need to do now is make sure that whichever Channel is selected, the data is sent to the
correct channel’s Pin connections— either Channell or Software. To do this we first place a channel
switch into our EV_Property Macro as shown below then send data to the correct pins for that
channel. Channel 0 = Software Channel 1 = Hardware

For the software option, the digital pins must be writable!

STEP 7 — To insert a Switch to control data flow

ff this is a software channel

CAI_UBIMIDEVAIUEL BAYL_LID|
tEmpRa If CHANNEL =07

fomponent Property Setvritable(this,

)

Yes and No
ompanent Property Setiiitable(ths.
<5

1

tempstring=-Component Property GetValue this.
R's)

tFy SetValue(thi
B S el uart] iSet/akue

tempstring)

To set up the data flow, the top two simulation
icons are copied across to the other side but the
true/false is the opposite value as shown below.

tempsting)
tempsting=cal_uart]:GetValue('RX)

Companent Property SetValueithis cal_uart1:SetValue(RX.
R, - :

] tempsinn
tempstring)]

Component

Property

SetWritable

Handle HANDLE this
Property STRING “TX” or “RX”

Value BOOL 1

On the other side, copy those icons across and set

the Value BOOL to 0: -

Component
Property
SetWritable
Handle
Property
Value

You should now have the following: -

Simulation]
Il Mecros B

nt

this
IITX” 0 r IIRX”
0

Properties

S iation|

[fthis is a software channel
(. i CHANNEL=0?

ompanent Property Setiitmble(this,
L5

o

ompanent Property Setwritable(ths.
“RXC,
0

tempstiing=cal_uart]:GetValue(TX)

jon
Component Property SetValue(ihis,
X

tempstring)
tempstring=cal_uart]:Getvalue('RX)

Companent Froperty Setvalueithis.
RX,

tempstring)

Simulation
Companent Property Setvritablethi,
e,

n

Simulation
Gomponent Property Setviimble(this,
R

)

cal_uartl :SetValue(TX
tempstring)

Simulation
cal_uartl-SetValueCRX,
tempsiring}

What we have achieved now is the ability to write to these chip connections, whatever Channel we
use — Channell or Software. We do not know what these pins are yet so we will need to set them

up.

If either of the channels is set to Channell or Software, yes we can write to them, but the API needs
to know to which pin in the chip they are connected, or even what device is being used. This is of
course another Dynamic property. To get this dynamic feature working, we need to check (GetValue)
and then (SetValue) for both the TX and the RX pins. These will of course be different for when either
option (Channell — Software) is selected and vice versa. If you study the following solution, it should
become clear to how this all works, hopefully.

STEP 8 — Get the pin connections and set appropriately

hes 2.8 soMware channel
¥ CHANNEL =07

Place two more simulation icons as shown and set to the
following: -

Component Property Sef/nibie(ha - Component Progenty Setvirmableita.
e, e
o I n

[Semstaton
Component Property Sefointable(ti. Component Propery Setsintableltha.
X R

o 1

Properties: Macro

Component e
P ro pe rty [

GetValue Functons
Handle HANDLE this

Property STRING “TX”

Return Value .tempstring

Parameters:

 Property STRING

Properties: Macro

Cal_uartl

SetValue .
Name STRING “TX"

Value STRING .tempstring

[f this ia a sofiware channel
If CHANNEL =07

Gomponent Property Sefiritablefthis,

Gomponent Property Setiritable(this,
0)

T

S‘"‘““’“"Tc.mmmpmwmm.m 5‘”“'““"”c.,mwemp,.,.,e%gaw,.ﬁmm Repeat the above two icon following on but
& i this time for the “RX” pin.

S i R] You should have this
Bl i Now, what ever you chose, software or
mm“‘*““‘"?‘i?:.,‘:ﬁ;”‘ hardware as the Channel, the setting are
#lcaiCampansntiasta copied from what you want to the base CAL

- i (code Abstraction layer)
ey

Now we need to set up the other side to do the switching around of the data for the other option.
Start by placing another two simulation icons on the
other side like this.

I thin ia » soware channel
If CHANNEL =07

This time they are the other way round. We start with the
cal_uart1 first followed by the component- GetValue and
then SetValue as shown below: -

This is because, if the Hardware Channell is selected,
these setting need to copied into our component settings.

iy

WX,
0)

[Call ComponantMacro

tempating=cal_uart) - GelVahue(TX) npatings-ComponenlPropeny CatVakualt
)

b

P on
nent Progerty Sel

Component Progerty SetValua(thia oL UsA1 -BoVale(T

mmostnng) semostnng)

3 ComponentMacro
1empettings Component Property GetVahue(tha.
RX)

[Simulation
cal_uatt SetValue(RX
Somost

cal_uartl S—
GetValue

ts [Simulation Functions

Name STRING “TX”
Return Value .tempstring

Component
Property
SetValue

Handle HANDLE this
Property STRING “TX"
Value STRING .tempstring

Copy those last two simulation icons and paste b

below what you have just done and change the TX
to RX. You should have the following setup as
shown.

Component Property Setiiitable(this,
0)

Component Property Setiritable(this,
"RX.
0)

et Epery Sl

tempstring)
pstring=cal_uat -GetValue(FX)

bmponent Property Setvalueithis,

_tempstring)

Component Proparty Setiritabls(this.
1)

Component Property Setiritable(this,
"RX.
1)

Call ComponentMacto
tempsiring=-Component Property GetValue(this
™)

cal_uartl::SetValue(TX",
fempsiring)
Gall ComponentMacro

tempstring=:Component Property. GetValus(ihis.
RX)

cal_uartl:SeiValue(RX,
tempstring)

Propertie: Properties: Matro

Di ne:

Simulation] Smulation

Display name

Functions i C s [5

Functions

=

meters
Name
H Handle
Property

That completes the most difficult part of the coding for EV_Property Macro. All we need to do now is

add some other Macros to give our component some useful functionality.

If you click onto the base CAL - cal_uartl, the select from the Properties explorer — Macros, you

should see a list of all the macros that this base cal has available.

»c Builda New component.fcix *

FILE EDIT VI 0 DEBUG BUID W

- -

[| =] =m 0§

@ searen Favourites Inputs outputs Il Displays sensors .} comms wirele storage Mechatroni MIAC Module s Simulation Tools
Project e 20: Dashboard Pancl v & x StrtPage EvProperty Main X

n"SHE®

40 po D PO

AddHeader
AddInterrupt
Call Macro

Ev_Property()

Shapes

Properties

Uninit
UpdateBaud

STEP 9 — Building the Interface for this Component

The EV_Property Marco will be invisible to the user, however, we need to build some Macros for the
component to be downloadable for use in your projects, such as to enable us to Initialise; Send data;
Receive Data and finally for this example a TX_Sync Macro. To include Macros for the component,
select the Macro TAB from the Project Explorer and select ADD New.

g
a
D
*
®
-

The fist Macro to add is — Initialise
Select - add new macro

Name of Macro - Initialise

This does not have a Return value. DEave o

Create a Mew Macro

A

- Parameters

Retum type

Mo return variable

Transmit_Byte 15 Component

Handle panel

B pr

We do need a Parameter for this Macro.
To do this we select add new. . »
Name of Macro — Transmit_Byte el

Call this Parameter — Data and set it to —
Byte

Create a New Variable

Descrption:

i Parameters X
Click OK e
There is no return value from a send

We could add a description of what it does
later!

Retum type:

No return varable

Receive_Byte

Macro name — Receive_Byte
Parameter - Timeout

To set up this Macro we need a
Parameter called Timeout. This is so
the base CAL will wait for incoming Descrption
data. ameters arts "u"-an-at-lii

Select add new from Parameter and S

name it Timeout with a byte
variable.

Click ok

Create a New Variable

N v vaniable:

Description of new macro:

Retum type:

No return variable

Create a New Macro

Then we need somewhere to store the Returned data select
Return Type and select BYTE

Parameters
E Timeout

Retum type:

BYTE

The last Macro I'm going to add is the transmit '[EE—_—_—_-
synchronisation pulses that are needed to get the receiver
to latch onto the transmitter. Add a new Macro called
TX_Sync

There are no Parameters needed for this Macro, but we do
need to add some functionality as | will show you how.

Description of new macro

Variables

Parameters

Retum type:

No return variable

Cancel

LEsUt BUILD WINDOW HELP
. -
@ seacn Favourites

Project explorer

P
U
0
-

a6 8N

Initialise -
insert the CAL initialise macro
Int

click ok

Transmit_Byte

Insert - send

The Parameter is set to
.Data

Click ok

What we should end up with for our Macros.
EV_Property

Initialise

Receive_Byte

TX_Sync

Transmit_Byte

For each of the Macros, to add that important
functionality, simply click onto each Macro and insert
the base components CAL macro you want i.e.

s

PoosenaNl

~@leENEPpOoOeTaN

Receive_Byte Macro

Insert - Receive

Parameter — .Timeout

Use the locals to find your
variables

The Return is —
.Return

TX_Sync

Use the Macro Cal_uart
Insert - Send

s
s

And add the decimal value
240 into the Char field

You can also add some
delays directly to build the
sync pattern you want.

~@leEEEPoOoteDR

23
3 BAUD_LIST

Funcions

B comp
= M cl_uartl

"= Delay

#= Init

1= Receive!

= Send

™= Un

#= UpdateBaud

ters:
ame
E Timeout
N Pors
I Receive_Byte
| Retumn

Retum Value:(INT)
.Return
=
OK & E o oK Add new>

#{Call Component Macr
cal_unit) Sand(255)

| add the following send macros with the values shown.

Send -240
Delay -2ms
Send -240
Delay -2ms
Send -240
Delay -2ms
Send -240
Delay -2ms
Send -254
Send -0

You can experiment with whatever sync pattern you think will
work best.

STEP 10 — Your component Image

A Froperties sition [l Macros

B component
/ Handle h_10_flasherl

Instancs
IB properties
5 el

insert it into your component.

*|Call Component Macr
cal_uartl:Send(240)

2 ms

#*|Call Component Macro
cal_uvartl:Send(240)

2ms

¥*|Call Component Macro
cal_uartl:Send(240)

2 ms

*|Call Component Macro
cal_vart]::Send(240)

2 ms

| Call Component Macro
cal_uvartl:Send(254)

*|Call Component Macmo
cal_uvarl:Send(l)

Choose a suitable icon image to be placed
in the black square and set the flash rate

to something suitable — just so it stays on
long enough when activated in your macros. Give the Flasher a suitable label. Now you are ready to

The Macro — Receive_Byte,
insert a simulation macro
icon at the top, select the
flasher from the list and set it
to flash the Receive LED.
That’s all you need to do.

Do the same for the Transmit
Macro to flash the transmit
LED.

CallComponentl
s

~EleENEPDOOIeDR

sooomn @
EENEEs F

PoGeeoaR

o«
=]
Ak

You will find this under View
When ticked, this will allow you to inspect any of the component properties, just make sure the
appropriate check boxes are ticked as shown.

Now we need to make sure our component is configured correctly. The component configuration tool
can be found here under File:

Here you need to enter all of your own details such as Author

Component Management

Interface Resources

Cosmetic Name

Location to be display (choose from list)
Description

Manufacturer Number

Advanced

msior| 1 =

anuf

Manufacturer code

The Interface tool allows you to set which macros are | |E_E_—_—G—G_—GGu__—__G.
downloadable or hidden as shown. setwe Resources

Ty
Do macro

E Macro
<Add ne Downloadable macro
Simulation macro

Make the Ev_Property macro HIDDEN == e s mace

Fitter for public variables

All that is required now is to export the component you have just finished.

Give it a suitable name and location where FC7 can find it as shown here. Fie o DEBUG EULD wiDow
. Hew Ctrl=N

ctri+0 outputs

Open Template X 2D: Das|

Reload

Import...

View - Global Options

Import 3D model...

Options

_ nent configuration...
Flowchart Scheme Annotations Application Editor

Export Component.

Create Project Report.

Save Image

1 Build a New component.fefx

STEP 11 — Other CAL’s available

Analogue to Digital gLCD

Poosenan

~EleoENEPDOOIeTRR

~E0¢HN

There are other available too

e 1 CAL Components
o 1.1 CALADC
1.2 CAL CAN
1.3 CAL EEPROM
1.4 CAL12C
1.5 CALPWM
1.6 CAL SPI
1.7 CAL UART

O O O O O O

https://www.matrixtsl.com/wikiv7/index.php?title=CAL_Components#CAL_Components
https://www.matrixtsl.com/wikiv7/index.php?title=CAL_Components#CAL_ADC
https://www.matrixtsl.com/wikiv7/index.php?title=CAL_Components#CAL_CAN
https://www.matrixtsl.com/wikiv7/index.php?title=CAL_Components#CAL_EEPROM
https://www.matrixtsl.com/wikiv7/index.php?title=CAL_Components#CAL_I2C
https://www.matrixtsl.com/wikiv7/index.php?title=CAL_Components#CAL_PWM
https://www.matrixtsl.com/wikiv7/index.php?title=CAL_Components#CAL_SPI
https://www.matrixtsl.com/wikiv7/index.php?title=CAL_Components#CAL_UART

