
Flowcode 7 – How to Make Your Own Components

If you are interested in making your own Flowcode components based upon devices which are not

currently included in the FC7 component library, then this guide will show you the journey I have taken

to build my own FC7 component. This enabled me to use any microcontroller using the FC7 graphical

programming language to control my new device. The problem is, where do you begin to get the

building process started. I have chosen this very simple device ONLY to illustrate the component

building steps involved, and is my visualisation of Flowcode’s inner workings.

This device is a very simple ASK - RF transmitter and receiver which uses the 433MHz band (amplitude

shift keying). These devices (transmitter and Receiver modules) have only one data connection each -

plus power. Data is applied as a data stream – 1 Bit at a time and 8 Bits per packet. No clock pin or

chip select – nothing, simple. So, how can I control it using Flowcode?

I could simply use the RS232 port, but what if I wanted to use any
available micro-controller, or use software only. That’s to say,
some controllers do not have a RS232 port. This is where the
power of FC7 comes in to play. If I built a component using FC7
internal tools, I will be able to attach this device to any controller
and use either the hardware on the chip or let FC7 build a
software option to control it. Building my own component will

allow me to include all the programming logic I need to control this device, wrapped up in one GUI
component stored in my component library, brilliant, where do I start?

Well, this is what I have discovered is possible with FC7.

To get the component building process started, it is worth pointing out now what I believe Flowcode

has under the HUD. This way, you will begin to understand what I did and how it related to how the

FC7 technology works.

First – FC7 has - GUI; CAL API (Graphics User Interface; Application programming Interface and Code

Abstraction Layer).

Flowcode 7 allows those on screen graphical symbols to be used for both Simulation (the visual effects

as a program is run before loading to the chip) and Conversion to micro controller specific code, plus

all of the programming logic you need to control the device. However, because there are many

controllers, the conversion process goes through several stages or cross compilers. So, our component

must follow a set of rules to allow this multi task environment to work correctly. Shown below is my

illustrated view of those links within FC7.

Flowcode has all the tools you need to build your own functional graphical components, that can be

saved to a library, ready to be inserted into your programs. The components you can build include LCD

displays; Stepper motors; Communication devices and just about anything you can think of, currently

available on today’s market. However, they need to be programmed using Flowcode’s powerful API

and it needs to know how to communicate with your new component. This is where Flowcode’s

extensive library of tools can be accessed to help build your graphical GUI image/footprint for your

component.

Shown below is a graphical view of what I think lies beneath Flowcode interface.

Flowcode uses technology layers (API; CAL; GUI) help to organise and keep track of the various

features of the target controllers and the hardware that each controller has (memory; pin

connections; RAM; EPROM;UART’s etc). Flowcode will then take what features you want for your

component and begin to link the technologies together using its built-in tools.

 CAL Components

 Simulation Components

 Component Libraries/Helpers

STEP 1 – choose your CAL component first!

The component building process begins with the – CAL (code Abstraction layer).

 (The CAL (Code Abstraction Layer) components are designed to simplify the creation of controller
programs or other related components.

- They encapsulate the internal functionality of the supported micro-controller device features.
- In this way your Flowcode program, or component, uses a consistent interface to the

functionality irrespective of the actual target micro-controller device.

It does sound a bit geeky, but it is simply the start of our first Flowcode building block for our new
component. (there are other base CAL’s available such as – gLCD; ADC etc)

Example -If my component needs to send data in a bit stream, I have the choice of using an UART –
RS232 or SPI or Software (FC7 can replicate both using software techniques!) – both are serial
interfaces and both have their own CAL.

Here are a few the generic building blocks - CAL’s available in Flowcode: (I’ll be showing you where to
find them later)

Peripheral CAL’s

ADC
A low-level implementation giving direct access to the CAL
Analogue-to-digital converter

CAN Low level routines for controlling the CAN interface

EEPROM
A low-level implementation giving direct access to the CAL
EEPROM memory

I2C Chip Abstraction Layer for Two Wire I2C Communications

PWM
A low-level implementation giving direct access to the CAL
Pulse-Width-Modulation hardware

SPI
A low-level implementation giving direct access to the CAL SPI -
Serial Communication hardware

UART

A low-level implementation giving direct access to the CAL
RS232 hardware

Begin by using one of these components to start the building process:

Go from this base component:- to this GUI component:-

The final GUI component has all the Macros/functions and programing logic you need, wrapped up in
a nice looking graphical component that controls your new device.

STEP 2 – Start building your component

Launch FC7 and start a new project. It does not matter what chip you use (8Bit PIC etc.), but it may
make sense to start with the chip you intend to be using with your component. The chip configuration
is not required as nothing about the chip is used when your component is created, only the links within
the CAL and the API are used to build your component. Begin by laying out your FC7 screen like this: -

Set up the view for- Project explorer; Component search; 2D: Dashboard Panel; Start Page and Properties

https://www.matrixtsl.com/wikiv7/index.php?title=Component:_ID_e77a4e40_e0df_431a_98f8_7ae4d8ebfbeb
https://www.matrixtsl.com/wikiv7/index.php?title=Component:_ID_8a1cca2f_7df1_4b3a_b24b_ca575fe84348
https://www.matrixtsl.com/wikiv7/index.php?title=Component:_ID_18738948_277c_4ed2_8be0_becc616cb0b9
https://www.matrixtsl.com/wikiv7/index.php?title=Component:_ID_ed3a5141_43bb_43e0_86b0_2243fd1147ca
https://www.matrixtsl.com/wikiv7/index.php?title=Component:_ID_068080a0_b949_4a7e_b370_c45430e0c9de
https://www.matrixtsl.com/wikiv7/index.php?title=Component:_ID_c67171df_0ad6_4b11_8361_cfe14b072847
https://www.matrixtsl.com/wikiv7/index.php?title=Component:_ID_91b64b1d_b8b2_40f1_b073_e953a91fa234
https://www.matrixtsl.com/wikiv7/index.php?title=File:Component_Icon_e77a4e40_e0df_431a_98f8_7ae4d8ebfbeb.png
https://www.matrixtsl.com/wikiv7/index.php?title=File:Component_Icon_8a1cca2f_7df1_4b3a_b24b_ca575fe84348.png
https://www.matrixtsl.com/wikiv7/index.php?title=File:Component_Icon_18738948_277c_4ed2_8be0_becc616cb0b9.png
https://www.matrixtsl.com/wikiv7/index.php?title=File:Component_Icon_ed3a5141_43bb_43e0_86b0_2243fd1147ca.png
https://www.matrixtsl.com/wikiv7/index.php?title=File:Component_Icon_068080a0_b949_4a7e_b370_c45430e0c9de.png
https://www.matrixtsl.com/wikiv7/index.php?title=File:Component_Icon_c67171df_0ad6_4b11_8361_cfe14b072847.png
https://www.matrixtsl.com/wikiv7/index.php?title=File:Component_Icon_91b64b1d_b8b2_40f1_b073_e953a91fa234.png
https://www.matrixtsl.com/wikiv7/index.php?title=File:Component_Icon_91b64b1d_b8b2_40f1_b073_e953a91fa234.png

It may be a bit tight on some screens but once you get building underway you can close some of the

panels.

Component Search – use this to find your chosen CAL. If you want to follow my example, search for UART and

place onto your 2D Dashboard. This small graphic image is never used to create your image of the

component, only the settings/properties and parameters it contains – it’s a CAL component, meaning FC7 uses

it to store base component settings and functions. So, it will be there during the whole component building

process, even when exporting your finished component, but never displayed with your finished component.

That’s the base component (bottom Layer), now the component you want to see on the screen when your

component is finished. Search for Flasher (top layer Component) and place it onto your 2D Dashboard. If you

look closely at this graphic and click onto it, the Properties shows it has some features that you can control: -

Label the name that will be shown on the component; ICON image (that’s the black square in the middle, you

get to place any icon you wish to make it resemble what your component will do); flash_time this is for

simulation purposes when it is used in your programs, any Macro which calls your component, you can make

the appropriate LED flash. You can now close the Component search.

Well, what you have done so far: -

• Started with base CAL - containing all the files at the bottom layer

• Place the top GUI image at the top layer – containing the simulation files

What we are about to do now, involves linking everything together. It involves building your

component using MACRO’s which are available at the CAL level (those function files and API system

variables) and bring them into use for your component. FC7 comes with other Components you can

use such as switches; led’s; LCD; gLCD’s etc to enable you to build a whole range of new components.

I have not used any of these yet, but it would be good to explore these later.

STEP 3 – Component Properties/Parameter/Events

Now we start with those all important component properties contained within the UART CAL. Begin by clicking

on the UART CAL to list what properties are contained within it and displayed in - Properties

What we see here is only a basic set of properties, however, FC7 has a valuable tool you can use to

inspect in much more detail what is contained in this CAL, we’ll look at that tool later. For now, at the

top of the list of the component properties are – CHANNEL. It contains a Handle Properties. This is a

linking event that we need to bring across to our component.

On the other side of the screen is – Project explorer

You will find a menu at the top labelled <EV> click on this to display a list of options available.

https://www.matrixtsl.com/wikiv7/index.php?title=File:Component_Icon_91b64b1d_b8b2_40f1_b073_e953a91fa234.png

This should display the following: -

The <EV> parameters contains what we need to control our

component. We will store these setting in the following macro

called Ev_Property

Under the heading Components double click the option –

Property – select add new

What this is going to do is to create an event MACRO which will

contain those properties and parameters. The event can then

be placed in our component. That way, the

events/parameters/properties can be selected and used to

build our component.

Click on the Add New and accept the default setting which

are: -

• Macro name - Ev_Property

• Return type – ULONG

Your Macro should look like this: -

Now click OK

Now, if you look at your Start page you may

still only see Main displayed. If that is true,

then from the menu Macro at the top,

select from the drop-down menu – Show as

Flowchart and click Ev_Property

Now your Start page will have the Ev_Property Macro shown.

Our component will now have the correct Properties and the correct RETURN for the event ready to

be included into your component. That’s our first link done. Don’t worry if nothing is making much

sense thus far. It is only important that you know this needs to be done to begin building our

component. We have placed a link that is needed to take information from the bottom CAL layer to

make it possible to pick what we need for our new component.

STEP 4 – Selecting Our Parameters and properties

Our screen should look like this shown below. Make sure our new component is selected, just click

anywhere inside of the 2D Dashboard to make sure. This way, we know we are working on our

component. You will notice our properties list is empty.

Click on the Properties down arrow and select Add New

This will give you the following

The cosmetic name – enter Channel

and the property type – Fixed list of Ints

Property variable – CHANNEL (must be upper case)

Click OK

The cosmetic name is literally cosmetic but the Property variable is

case sensitive – be careful!

What we are about to do, is bring across all the instances that are associated with the property called

‘CANNEL’., for which there is two (these are the properties for the RS232)

- Hardware (fixed by the system) Software (we get to pick which pins on the controller to

use).

You can now check the following by clicking onto the UART CAL, and under properties called Channel

you will see two option Software and Channel 1. It is these properties we need to pull across. If we

compare that with what we see on our components properties under ‘Channel’, the list is empty.

The problem is though, whatever we do with our component in the way of changes, these changes

MUST be transferred back to the base CAL component. This is because the base component is used

by the API and are therefore Dynamic.

Don’t worry if this sound odd, as long as you know this to be true, it will make sense of what we are

about to do next to get that dynamic transfer of information, from the CAL based component to our

component and any changes we do with our component are transferred back to the based CAL

component. In other words, it must not be possible for our component to be in a different state to the

base component. To get this dynamic information flow, there is only one way, coding.

STEP 5 – Building the dynamic properties list

To code the Ev_Property Macro, make sure you are working inside this Macro from the start page.

This Macro is invisible to the end user when the component is finished. Any coding we do here, is

never compiled to the chip, it is only used to enable the end user of the component to control its

properties and other settings.

From the Flowcode ICON’s on the left, select Simulation and drag it across as shown below. When you

click onto it, you will see both of the following components – the base cal_uart1 and the Flasher.

Select the cal_uart1 and along the top of the Macro, select Simulation as shown here;

Select the option – GetList

The Parameter type you need to select from those that are

associated with GetList. If, like me you have no idea of what

they should be, simply place two quotation marks and click

between them. Now, when you type a capital letter such as “C”,

a list appears giving what it expects to be type in this text field –

select “CHANNEL”

Now we need somewhere to store that information. In the

Return Value, we will create and use a Local variable

called .tempstring

(if it places [20] at the end, remove them using edit)

Parameter Name STRING “CHANNEL”

Return Value

- Local variable .tempstring

Now we need to place that in the Return value box

You can get the Local variable by using the Full Stop
It should then appear. If not, you need to create a local
variable by that name to store the information you
need.

Now, the Simulation Macro for cal_uart1 and has GetList and the parameter called CHANNEL with

the return value called .tempstring containing all the information you need for your component.

Now we need to define the Functions for the above, in other words, what we need to do once we

have the parameters stored in the

.tempstring.

STEP 6 – Define the Functions for the CHANNEL

We now need to use the variable called .tempstring

We don’t know what is in it, however, we want to extract - Filter what it contains and place it in our

component. If it is changed, then the contents of the string will change making it possible to put

these changes back into the base CAL. Our code to

do this will look like this:

Insert three more Simulation code icon’s and set

them as shown below:

• Make sure you click anywhere inside of the

2D Dashboard Panel to work on your

component

Make sure the correct TAB Functions is selected to

make the settings you need.

1 - Under the Functions TAB– Select Component – Property –
then SetFilter and for each of the following:
Handle HANDEL – this
Property STRING - “CHANNEL”
Value STRING - .tempstring
And then OK
What this Macro does, is to filter out whatever the CAL settings

are for the CHANNEL from the .tempstring

1

2

3

2 – Next Simulation ICON, Under Functions –
Component – Property
– select GetValue and for each of the following
Handle HANDLE - this
Property STRING - “CHANNEL”

Return Value .tempstring

Click OK

3 - Make sure Simulation TAB is selected and from the
option select the cal_uart1 image first
Now select Setvalue and for each of the following

Name STRING - “CHANNEL”
Value STRING -.tempstring

Click OK

You now have four Simulation code ICON’s which
1: copy what’s in the bottom CAL layer using tempstring
2: places it in our top GUI layer for our component using Filter
3: copies whatever changes have been made in our components
4: places these changes into the bottom CAL layer using tempstring.

To make this work, you
need to place a Macro call
in the Main Start Page and
select the macro
EV_Property
This will make the
CHANNEL selection
Dynamic

Now we need to put in those physical connections to the Chip. This has been made much easier with
FC7. Simply click Properties and select add new. For the Cosmetic name RX and variable name RX. The
Property type, select Single Digital Pin as shown.

Do the same for the TX.

The cosmetic name is exactly that – cosmetic!

If you press RUN, then when you select your component you will see the options of Channel 1 or

Software. If you select the software option you will be able to select which pins of the chip are used

for the RS232 port. Do that and then click onto the Cal_uart1 base component icon. Here you will see

that the pins match what you have selected by your component. Remember though, you are

controlling the connection of the base CAL from your component only!

STEP 7 – Now the Baud Rate

We can repeat the above procedure to get the Baud rate options for our component. Remember,

this procedure consists of: -

• From the CAL – Getlist

• Our component – Setfilter

• Our component – Getvalue

• Base CAL - Setvalue

Bring four more simulation icons’ across to the EV_Property macro and set them as shown below: -

1 - Under the Simulation TAB–
Select cal_uart1
Property – then GetList and for each of the following:
Name STRING – “BAUD_LIST”
Reurn Value STRING - .tempstring

Make sure you use the under-score key “_”
And then OK

Select our component by clicking anywhere inside of the 2D
Dashboard Panel
2 - Under the Functions TAB
Select Component
Property – then SetFilter and for each of the following:
Handle HANDEL – this
Property STRING - “BAUD_LIST”
Value STRING - .tempstring

And then OK

Select our component
3– Next Simulation ICON, Under Functions TAB
Component
Property
select GetValue and for each of the following
Handle HANDLE - this
Property STRING - “BAUD_LIST”

Return Value .tempstring

1

2

3

4

4- Make sure Simulation TAB is selected and from the option
select the cal_uart1
Now select Setvalue and for each of the following

Name STRING - “BAUD_LIST”
Value STRING -.tempstring

Click OK

You can check that everything is working ok, by clicking on

the Baud rate label under the cal_uart1 and select Expose.

This will reveal the baud rate in your component. Now when

you change the baud rate the base CAL UART baud rate will

change to the value you have selected.

What we need to do now is make sure that whichever Channel is selected, the data is sent to the

correct channel’s Pin connections– either Channel1 or Software. To do this we first place a channel

switch into our EV_Property Macro as shown below then send data to the correct pins for that

channel. Channel 0 = Software Channel 1 = Hardware

For the software option, the digital pins must be writable!

STEP 7 – To insert a Switch to control data flow

To set up the data flow, the top two simulation
icons are copied across to the other side but the
true/false is the opposite value as shown below.

TX RX

Component
Property
SetWritable
Handle HANDLE this
Property STRING “TX” or “RX”
Value BOOL 1

On the other side, copy those icons across and set
the Value BOOL to 0: -

Component
Property
SetWritable
Handle HANDLE this
Property STRING “TX” or “RX”
Value BOOL 0

You should now have the following: -

What we have achieved now is the ability to write to these chip connections, whatever Channel we
use – Channel1 or Software. We do not know what these pins are yet so we will need to set them
up.

If either of the channels is set to Channel1 or Software, yes we can write to them, but the API needs
to know to which pin in the chip they are connected, or even what device is being used. This is of
course another Dynamic property. To get this dynamic feature working, we need to check (GetValue)
and then (SetValue) for both the TX and the RX pins. These will of course be different for when either
option (Channel1 – Software) is selected and vice versa. If you study the following solution, it should
become clear to how this all works, hopefully.

STEP 8 – Get the pin connections and set appropriately

Place two more simulation icons as shown and set to the
following: -

Component
Property
GetValue

Handle HANDLE this
Property STRING “TX”
Return Value .tempstring

Cal_uart1
SetValue

Name STRING “TX”
Value STRING .tempstring

Repeat the above two icon following on but
this time for the “RX” pin.
You should have this
Now, what ever you chose, software or
hardware as the Channel, the setting are
copied from what you want to the base CAL
(code Abstraction layer)

Now we need to set up the other side to do the switching around of the data for the other option.
Start by placing another two simulation icons on the
other side like this.

This time they are the other way round. We start with the
cal_uart1 first followed by the component- GetValue and
then SetValue as shown below: -
This is because, if the Hardware Channel1 is selected,
these setting need to copied into our component settings.

cal_uart1
GetValue

Name STRING “TX”
Return Value .tempstring

Component
Property
SetValue

Handle HANDLE this
Property STRING “TX”
Value STRING .tempstring

Copy those last two simulation icons and paste
below what you have just done and change the TX
to RX. You should have the following setup as
shown.

That completes the most difficult part of the coding for EV_Property Macro. All we need to do now is
add some other Macros to give our component some useful functionality.

If you click onto the base CAL – cal_uart1, the select from the Properties explorer – Macros, you
should see a list of all the macros that this base cal has available.

STEP 9 – Building the Interface for this Component
The EV_Property Marco will be invisible to the user, however, we need to build some Macros for the
component to be downloadable for use in your projects, such as to enable us to Initialise; Send data;
Receive Data and finally for this example a TX_Sync Macro. To include Macros for the component,
select the Macro TAB from the Project Explorer and select ADD New.

The fist Macro to add is – Initialise
Select - add new macro
Name of Macro - Initialise
This does not have a Return value.

Transmit_Byte

We do need a Parameter for this Macro.
To do this we select add new.
Name of Macro – Transmit_Byte
Call this Parameter – Data and set it to –
Byte

Click OK
There is no return value from a send
We could add a description of what it does
later!

Receive_Byte
Macro name – Receive_Byte
Parameter - Timeout
To set up this Macro we need a
Parameter called Timeout. This is so
the base CAL will wait for incoming
data.
Select add new from Parameter and
name it Timeout with a byte
variable.
Click ok

Then we need somewhere to store the Returned data select
Return Type and select BYTE

The last Macro I’m going to add is the transmit
synchronisation pulses that are needed to get the receiver
to latch onto the transmitter. Add a new Macro called
TX_Sync
There are no Parameters needed for this Macro, but we do
need to add some functionality as I will show you how.

What we should end up with for our Macros.
EV_Property
Initialise
Receive_Byte
TX_Sync
Transmit_Byte

For each of the Macros, to add that important
functionality, simply click onto each Macro and insert
the base components CAL macro you want i.e.

Initialise –
insert the CAL initialise macro
Int

click ok

Transmit_Byte
Insert - send
The Parameter is set to
.Data

Click ok

Receive_Byte Macro
Insert - Receive
Parameter – .Timeout
Use the locals to find your
variables

The Return is –
.Return

TX_Sync

Use the Macro Cal_uart
Insert - Send

And add the decimal value
240 into the Char field

You can also add some
delays directly to build the
sync pattern you want.

I add the following send macros with the values shown.

Send - 240
Delay - 2ms
Send - 240
Delay - 2ms
Send - 240
Delay - 2ms
Send - 240
Delay - 2ms
Send - 254
Send - 0

You can experiment with whatever sync pattern you think will
work best.

STEP 10 – Your component Image

Choose a suitable icon image to be placed
in the black square and set the flash rate
to something suitable – just so it stays on

long enough when activated in your macros. Give the Flasher a suitable label. Now you are ready to
insert it into your component.

The Macro – Receive_Byte,
insert a simulation macro
icon at the top, select the
flasher from the list and set it
to flash the Receive LED.
That’s all you need to do.
Do the same for the Transmit
Macro to flash the transmit
LED.

STEP 11 – Useful tools included in Flowcode 7

First – Component Debugging

You will find this under View
When ticked, this will allow you to inspect any of the component properties, just make sure the
appropriate check boxes are ticked as shown.

Now we need to make sure our component is configured correctly. The component configuration tool
can be found here under File:

Here you need to enter all of your own details such as Author

Cosmetic Name
Location to be display (choose from list)
Description
Manufacturer Number

The Interface tool allows you to set which macros are
downloadable or hidden as shown.

Make the Ev_Property macro HIDDEN

All that is required now is to export the component you have just finished.
Give it a suitable name and location where FC7 can find it as shown here.

View – Global Options

STEP 11 – Other CAL’s available

Analogue to Digital gLCD

There are other available too

• 1 CAL Components
o 1.1 CAL ADC
o 1.2 CAL CAN
o 1.3 CAL EEPROM
o 1.4 CAL I2C
o 1.5 CAL PWM
o 1.6 CAL SPI
o 1.7 CAL UART

https://www.matrixtsl.com/wikiv7/index.php?title=CAL_Components#CAL_Components
https://www.matrixtsl.com/wikiv7/index.php?title=CAL_Components#CAL_ADC
https://www.matrixtsl.com/wikiv7/index.php?title=CAL_Components#CAL_CAN
https://www.matrixtsl.com/wikiv7/index.php?title=CAL_Components#CAL_EEPROM
https://www.matrixtsl.com/wikiv7/index.php?title=CAL_Components#CAL_I2C
https://www.matrixtsl.com/wikiv7/index.php?title=CAL_Components#CAL_PWM
https://www.matrixtsl.com/wikiv7/index.php?title=CAL_Components#CAL_SPI
https://www.matrixtsl.com/wikiv7/index.php?title=CAL_Components#CAL_UART

