
1

Build Your Own Graphical LCD Component

This is a journey, that has taken me to a point where I am able to build and configure

my very own graphical component. Having spent a lot of time studying the design

specification of various LCD display functional capabilities, but unable to make any

changes that I required. What I needed, was a way to take control of the gLCD. I would

like to share that development journey with you. My journey started with a base gLCD

component (Thank You Matrixtsl team for allowing me to share this component) with

many of the Flowcode 7 simulation macro’s intact, including the base functionality to

produce text and graphics. The functions I was interested in changing; the

communication port (the use of the hardware SPI port - that’s already added for you)

and the control macro’s which initialises the gLCD via command codes (you get to

change these). This of course would give greater control of the LCD as well as a much-

needed speed boost, plus the ability to change the LCD component configurations.

Did you know, some gLCD displays have hardware scrolling built-in and

LUT’s for character generation! Yes, well now you can begin experimentation

of those elusive commands!

You are free to develop your very own component, but please share your successes.

2

The Base Graphical Component

We will start by looking at the building blocks of the base graphical gLCD display

component, that will enable you to build your very own gLCD component.

Download the file: - base_gLCD_spi.fcfx

Now, you have the option to select the communication port - I2C or SPI, your choice.

The SPI is already done for you. I will, in time, be developing a base gLCD with I2C.

First - The Base Canvas Layer (pick your own size)– used for both

simulation and component construction.

This is the main part of the base component, adjustable in size to match your gLCD

– the base canvas layer as shown here (highlighted in white). The other shapes

around it are for cosmetic purposes only.

Everything is linked to this layer in one

form or another, so it is worth noting,

that the names of files; variables;

properties; parameters and many of

the simulation/functional macros are

all associated to this layer. We must

therefore, be aware that some names

cannot be changed or the new

component will not work, as I had

discovered. I will give details of which

ones you can change.

 I have highlighted the layer, so the

Properties panel on the left gives

those details that we need to bring

across to our LCD component. The

obvious property is the canvas

dimensions. You can set this to

whatever the corresponding size of

your display.

You will notice the main properties

indicated are:

• Monochrome

• DisplayMethod

• Embed Font Set

• Colour_Bit_Depth

• Red

• Green

• Blue

Bit Depth

3

However, there are some properties/variables which you need to be careful with,

example:

• pixel _height

• pixel_width

• foreground_colour

• background_colour

Any changes to their names you make here will cause the component to fail, unless

you change every occurrence within the component to the name you have changed

them to. I would recommend you leave the variable names as they are.

Here are the main ‘Global’ properties that are used within the base components

macros calculations.

Obviously, some properties you may wish not to use.

Example – what if you decide to go down the I2C route,

then the a0_pin would not be needed. Yes, you can

leave the Property in, it will not do any harm, but will

never be implemented during execution of the

component. This makes the base gLCD display

component extremely versatile.

The CHANNEL; MOSI and CLK, I have added for this

component, These can be safely removed if you use

the I2C CAL.

You may well wonder why I have put the ‘CHANNEL’

property in when I do not intend to use software – well,

what about those 16 & 32 Bit pic’s that have two SPI

ports!

Yes, you can then implement the use of the other SPI

port for a SD Card reader – for storing images perhaps.

Or, maybe adding a routine for the (chip select) CS pin

so the SD card shares the same SPI port. These

options all become a possibility for experimentation.

Also, there are some ‘Local’ variables/properties for

many of the macro’s. Just leave them as they are,

there’s no need to change them.

Just remember, we are only concerned with just those for – canvas size;

communication CAL and initialisation commands. So, the majority, we can leave well

alone. Just concentrating on these three, will give you a much greater insight to what

possibilities are waiting!

4

Base Components Macros – 32 gLCD Simulation/Functional macro’s

This list shows all the specific macro’s

types used for the based gLCD

component. Those shown in green, we

need to change/edit/develop. Don’t change

their names though!

• prv_init – this macro contains both

component property events and simulation

event. You also get to choose which

communication CAL to be used for you

gLCD

• Main – this is the main component

program

• Initialise – this macro is called first

when the new component is started in your

project. It has all the command codes that

are needed to set up your gLCD

• InitSim – generates the components

graphical/text output onto your computer

screen during project development -

simulation. They show what the actual

component will do when your project is

compiled to the chip.

• SendByte – sends data to your gLCD

using whichever communication port you

have chosen. Holds the communication

protocol logic using digital output pins that

you get to choose. I have remove the

software option, but it could be added if you

wish.

• Functional – the rest are functional

routines for producing text and graphics to

make the display work on your hardware.

Those with ‘Sim’ in their name are purely

for simulation and MUST NOT be changed.

The one called ‘ReadASCIILUT’ looks like it has nothing in it, it’s embedded with the

API of Flowcode 7, and is compiled into the microcontroller ROM (character Look-up-

tables). The rest, leave well alone.

Well, by changing just three macros, you end up with a completely new gLCD

component. We will need to finalise what we have done by completing the new

components configuration before exporting to our library. This is achieved by giving it

a unique GUID component code; ICON; name and which macros are to be visible to

5

the user. All the work for SPI is done ready, needing only those changes as to which

digital output control pins you need. So, let’s get started.

Step 1 – Base gLCD Canvas Layer

The only properties that require

changing for most LCD displays are:

(Click onto the canvas layer and

adjust to your displays requirements).

• Dimensions – set the canvas

size to match your LCD. Whatever

changes you make here are

automatically transferred to your

Component macros.

• Set the canvas layer colour to

match your display (some are black;

blue; yellow or green etc

• Monochrome should be set to

YES if you are using a monochrome

(single colour) display.

Leave the rest as they are. I have not

experimented with changes made to

each of the colour bit depths, may be worth investigating.

Step 2 – Digital Control Pins

(Click anywhere on the 3D System Panel to

select your component).

To install digital control pins such as RW or RD

etc, then you can do this as follows:

Click onto the Properties tab and using the

pull down menu, select - Add new

You will be presented with a list as shown

opposite. Select from the property type –

Single Digital Pin and give it a name that

matches its purpose (the name is cosmetic).

Next, give it a variable name that can be called

in the SendByte macro. You can delete any

pin that is not required, if it is remove from the

SendByte macro first.

6

Step 3 – Communication CAL SPI

This base gLCD has been designed

around the SPI communication port.

I would recommend that, for your

first attempt into developing your

own component, would be to use a

gLCD that has this method of

communication. The development

will be much easier to build and test,

giving confidence of further

development when you have

something that works.

Not all the CAL SPI properties have been used, only those for: (already set up for you)

• CHANNEL

• MOSI (changed Property cosmetic name to data)

• CLK (changed Property cosmetic name to clock)

• Prescale

To link those to our component, we do this by editing the prv_init macro. (already

done for the SPI com, port).

I would recommend that you export the macro before you make any changes. That

way, you can import it again if you wish. The first set of simulation icons are code that

links your component to the base SPI UART CAL, those below the CHANNEL branch

are for Flowcode 7 display simulation. Now, when you click anywhere on the 3D

System panel, you will see those communication port connections. These simulation

macros are only for the base communication CAL, not the digital control pins. Those

are handled next in the SendByte Macro.

7

Step 4 – LCD Control – (SendByte macro)

This routine is called by each of the following

macros;

• Print

• Plot

• BPlot

• Initialise

• ClearDisplay

Therefore, for this LCD, it is necessary to

differentiate command codes from data, these are

processed by this macro. This is an important

function that this macro achieves using constants

and parameters. In fact, everything that is sent to

your LCD is handled by this macro.

Let’s have a look at a gLCD Manual (ILI9163) which specifies how this should be

performed. The digital pin a0_pin performs the function control labelled D/C for this

device. You will notice, this a0_pin is controlled by the Parameter called .Command

(not to be confused by a variable called Command).

These two variable constants play a key role in the
SendByte macro

8

When the D/C signal is LOW – the LCD expects – command codes
When the D/C signal is high – the LCD expect – data
It only needs to be in the correct state at the beginning of the
packet!

So, how do we achieve this?

Let’s have a look at the SendByte macro again.

This macro has two parameters:
- Command
- LCD_Out

So, when this macro is called, these two
parameters are requested by the macro.

Looking at the macro Initialise that calls the
SendByte macro:

There is a long list of macro call’s for the

SendByte macro, as shown:

The Parameters on the left are those

expected by the SendByte:

Command and LCD_Out

They must not be

confused with

variables

9

Therefore, if we send the variable called Command, we are sending the value = 0

And if we send the variable called Parameter, we are sending the value = 1

This variable is now carried into the SendByte macro, making it possible for you to

use it to control the a0_pin set by the variable within this macro itself.

(Place your mouse over each of the variable constants in the Project explorer

window to see their values) see above!

The base UART SPI CAL is called

here and the data is sent to the

device by obtaining data from the

LCD_Out variable.

Therefore, if you wish to use the I2C base CAL, it only this macro call here, that will

be changed.

Compare this to the 4-Pins Serial protocol and you will then discover, that the routine

is able to switch the a0_pin to whatever setting is required just by the parameter set

by the variable it contains (low for commands and high for data).

If you wish to change the way the LCD is controlled, it is with this macro (SendByte)

that you would implement the control strategy for your device, using digital control pins

that you have installed/set-up in your components properties panel. I have only ever

found, where commands and data need to specifically differentiated, there has only

ever been one digital control pin used. Their names may change, but their function is

fundamentally similar.

I believe the hardest part is getting the command codes set correctly. Everything else

would possibly remain unchanged.

a0_pin is controlled by the

Parameter called .Command which

holds the variable value:

 either 0 or 1

10

Step 5– Initialisation Commands.

To get your copy of the command codes to initialise for your chosen gLCD, it will of

course involve thorough research, but it will be worth the effort. Here is an example of

what you are looking for: example - SSD1306 specification

This one is for the SSD1306. Within the document, you will find what each of the code

blocks (flowchart) are, for setting up the LCD display, helping you to locate the ones

of interest to yourself. It will also help identify command codes from data settings for

each code block. Yes, it will be frustrating, but it’s what many coders are prepared to

do for that special project.

11

Flowcode 7 has many of the initialise commands already built in. You can find them

as shown below.

Stat a new project and load the LCD component that matches the one you wish to

develop. Using the ‘View C’ code under the Build menu, will allow inspection of the

command codes. However, you may wish to research any further options available by

obtaining the displays specification manual.

Once you have finished developing the control strategy for your display using the

SendByte macro and set up the command codes, all that is required now is to

configure your LCD display component ready for exporting to you library.

12

Step 6 –LCD component Configuration

From the menu – File, select (Component Configuration)

All the options for how the component is used by Flowcode 7

are selected from here.

There are three-tab menus.

Setup – Interface - Resources

Setup -Standard

I would suggest you start with a status

of – Development. It is up to you if you

chose to place it in a category. The icon

will help identify its status from other

components.

Fill in as much details as possible.

Advanced

Tick the box – Inherit macros from base

component.

The GUID MUST be updated by clicking on

the edit and select New. You only need to do

this once. When you are developing your

component, changes can be made and will

always be referenced to this new component

with this GUID.

13

Interface

All the macros associated to this

component are shown on the left. You

need to select which macros will be set

as (downloadable). The other macros

should be set to Hidden. They will be

embedded with the finished component.

No changes are needed for the

resources, or until you can develop your

own 3D models and include them with

your component.

When you have completed the components configuration, all that remains is to export

the component to the library location you have set up in the global options.

This is how your finished gLCD will look.

14

If you click onto the component to select the

rectangle shape, you can change its

appearance/colour using the colour

properties. It just gives it that personal

appearance to suit yourself.

You can even add text to further add more

clarity to the devices identification.

Your finished component will look something like that shown above, minus the base

UART SPI CAL of course.

That’s it, your all done.

