Build Your Own Graphical LCD Component

i IL19163C

This is a journey, that has taken me to a point where | am able to build and configure
my very own graphical component. Having spent a lot of time studying the design
specification of various LCD display functional capabilities, but unable to make any
changes that | required. What | needed, was a way to take control of the gLCD. | would
like to share that development journey with you. My journey started with a base gLCD
component (Thank You Matrixtsl team for allowing me to share this component) with
many of the Flowcode 7 simulation macro’s intact, including the base functionality to
produce text and graphics. The functions | was interested in changing; the
communication port (the use of the hardware SPI port - that’s already added for you)
and the control macro’s which initialises the gLCD via command codes (you get to
change these). This of course would give greater control of the LCD as well as a much-
needed speed boost, plus the ability to change the LCD component configurations.

Did you know, some gLCD displays have hardware scrolling built-in and
LUT's for character generation! Yes, well now you can begin experimentation
of those elusive commands!

You are free to develop your very own component, but please share your successes.

The Base Graphical Component

We will start by looking at the building blocks of the base graphical gLCD display
component, that will enable you to build your very own gLCD component.

Download the file: - base_gLCD_spi.fcfx

Now, you have the option to select the communication port - I2C or SPI, your choice.
The SPI is already done for you. | will, in time, be developing a base gLCD with 12C.

First - The Base Canvas Layer (pick your own size)— used for both
simulation and component construction.

This is the main part of the base component, adjustable in size to match your gLCD
— the base canvas layer as shown here (highlighted in white). The other shapes
around it are for cosmetic purposes only.

Everything is linked to this layer in one
form or another, so it is worth noting,
that the names of files; variables;
properties; parameters and many of
the simulation/functional macros are
all associated to this layer. We must
therefore, be aware that some names
cannot be changed or the new
component will not work, as | had
discovered. | will give details of which
ones you can change.

| have highlighted the layer, so the
| Properties panel on the left gives
— those details that we need to bring
Base_GLCD across to our LCD component. The
/¥ Properties +lib Position Il Macros obvious property is the canvas
E Component dimensions. You can set this to
7 pande Sase_0LCD whatever the corresponding size of

& properties _. your display.

= P Dimensions

Simulation

160
oz 128 You will notice the main properties
=-PBa Colour . .
& Monochrome No indicated are:
| Colo __|oooooo
I FFRFFF e Monochrome
* DisplayMethod

Bit Depth
it Depth 5 ¢ Embed Font Set

7, Green Bit Depth 6 e Colour_Bit_Depth
e Bit Depth 5 e Red

= P& Simulation Mode .
& Display Method Bitmap e Green Bit Depth

&% Embed Font Set Yes e Blue

However, there are some properties/variables which you need to be careful with,

example:
e pixel _height
e pixel_width

e foreground_colour
e background_colour

Any changes to their names you make here will cause the component to fail, unless
you change every occurrence within the component to the name you have changed
them to. | would recommend you leave the variable names as they are.

Here are the main ‘Global’ properties that are used within the base components

macros calculations.

N |z & I
B Globals
B Constants
Add new=
Command
Parameter
L fake
b true
Variables
< Add new:>
Nurnber
. Orientation
#, background_col_var
yund_col_var

G ABLED
cal_spil::PR_SCALE

CHAMMEL
MOSI
CLK
chip_sel_pin
al_pin
reset_pin
led_pin
' piel_height
pixel_width
| monochrome
, foreground_colour
. background_colour
" colour_bit_depth
red_bit_depth
reen_bit_depth
blue_bit_depth
. DisplayMethod

Obviously, some properties you may wish not to use.

Example — what if you decide to go down the 12C route,
then the a0_pin would not be needed. Yes, you can
leave the Property in, it will not do any harm, but will
never be implemented during execution of the
component. This makes the base gLCD display
component extremely versatile.

The CHANNEL; MOSI and CLK, | have added for this
component, These can be safely removed if you use
the 12C CAL.

You may well wonder why | have put the ‘CHANNEL"
property in when | do not intend to use software — well,
what about those 16 & 32 Bit pic’s that have two SPI
ports!

Yes, you can then implement the use of the other SPI
port for a SD Card reader — for storing images perhaps.
Or, maybe adding a routine for the (chip select) CS pin
so the SD card shares the same SPI port. These
options all become a possibility for experimentation.

Also, there are some ‘Local’ variables/properties for
many of the macro’s. Just leave them as they are,
there’s no need to change them.

Just remember, we are only concerned with just those for — canvas size;
communication CAL and initialisation commands. So, the majority, we can leave well
alone. Just concentrating on these three, will give you a much greater insight to what

possibilities are waiting!

Base Components Macros - 32 gLCD Simulation/Functional macro’s

Project explorer

[+ 8-+ O+ B+ -+ I+ -+ B+ -+ I+ 8-+ I - -+ -+ 8+ -+ -+ S -+ B+ -+ - -+ -+ -+ -+ B+ -+ B+ -+ -+

<Add new>

* Main

BPlot

BPlotSim

BacklightOff
BacklightOn
ClearDisplay

ClearSim

Drawline
Drawline_5im
DrawRectangle
DrawRectangleSim
InitSim

Initialise

Plot

PlotSim

Print

PrintMumber
PrintMumber_Sim
PrintSim
Raw_GetBackgroundColour
Raw_GetForegroundColour
Raw_OpenWindow
Raw_WriteColour
ReadASCIILUT
SendByte
SetBGColourSim
SetBackgroundColour
SetDisplayOrientation
SetDisplayOrientationSim
SetFGColourSim
SetForegroundColour
pr_init

This list shows all the specific macro’s
types used for the based gLCD
component. Those shown in green, we
need to change/edit/develop. Don’'t change
their names though!

e prv_init — this macro contains both
component property events and simulation
event. You also get to choose which
communication CAL to be used for you
gLCD

e Main - this is the main component
program

e Initialise — this macro is called first
when the new component is started in your
project. It has all the command codes that
are needed to set up your gLCD

e InitSim — generates the components
graphical/text output onto your computer
screen during project development -
simulation. They show what the actual
component will do when your project is
compiled to the chip.

e SendByte —sends data to your gLCD
using whichever communication port you
have chosen. Holds the communication
protocol logic using digital output pins that
you get to choose. | have remove the
software option, but it could be added if you
wish.

e Functional — the rest are functional
routines for producing text and graphics to
make the display work on your hardware.

Those with ‘Sim’ in their name are purely
for simulation and MUST NOT be changed.

The one called ‘ReadASCIILUT’ looks like it has nothing in it, it's embedded with the
API of Flowcode 7, and is compiled into the microcontroller ROM (character Look-up-
tables). The rest, leave well alone.

Well, by changing just three macros, you end up with a completely new gLCD
component. We will need to finalise what we have done by completing the new
components configuration before exporting to our library. This is achieved by giving it
a unique GUID component code; ICON; name and which macros are to be visible to

the user. All the work for SPI is done ready, needing only those changes as to which
digital output control pins you need. So, let's get started.

Step 1 — Base gLCD Canvas Layer

The only properties that require
changing for most LCD displays are:

(Click onto the canvas layer and
adjust to your displays requirements).

o Dimensions — set the canvas
size to match your LCD. Whatever
changes you make here are
automatically transferred to your
Component macros.

o Set the canvas layer colour to
match your display (some are black;
blue; yellow or green etc

o Monochrome should be set to
YES if you are using a monochrome
(single colour) display.

Leave the rest as they are. | have not
experimented with changes made to

each of the colour bit depths, may be worth investigating.

Channel 1
$PORTD.O

$PORTD.1
$i

_|oooooo
| s

lay Method

(Click anywhere on the 3D System Panel to
select your component).

To install digital control pins such as RW or RD
etc, then you can do this as follows:

Click onto the Properties tab and using the
pull down menu, select - Add new

You will be presented with a list as shown
opposite. Select from the property type -
Single Digital Pin and give it a name that
matches its purpose (the name is cosmetic).
Next, give it a variable name that can be called
in the SendByte macro. You can delete any
pin that is not required, if it is remove from the
SendByte macro first.

Step 3 — Communication CAL SPI

cal_spil : @l This base gLCD has been designed

/" proverties b position [l Macros e around the SPI communication port.

B Component e 5 = | would recommend that, for your

SP1 first attempt into developing your

Ves SRIlll own component, would be to use a

AL gLCD that has this method of

communication. The development

will be much easier to build and test,

P giving confidence of further

Traing Edge development when you have
something that works.

cope Traces Mo
&» Console Data Mo

Not all the CAL SPI properties have been used, only those for: (already set up for you)

e CHANNEL

e MOSI (changed Property cosmetic name to data)
e CLK (changed Property cosmetic name to clock)
e Prescale

To link those to our component, we do this by editing the prv_init macro. (already
done for the SPI com, port).

Initalissbon outne forhe component

| would recommend that you export the macro before you make any changes. That
way, you can import it again if you wish. The first set of simulation icons are code that
links your component to the base SPI UART CAL, those below the CHANNEL branch
are for Flowcode 7 display simulation. Now, when you click anywhere on the 3D
System panel, you will see those communication port connections. These simulation
macros are only for the base communication CAL, not the digital control pins. Those
are handled next in the SendByte Macro.

Step 4 — LCD Control — (SendByte macro)

This routine is called by each of the following

macros,
SelectDisplay
- chip_sel_pin=0 ° Print
o Plot
Command
al_pin= Command o BPIOt
o Initialise
Call Component Macmo ° C|eaI’DiSp|ay
cal_spil:Master_Byte(LCD_Ouf)
. Therefore, for this LCD, it is necessary to
Calculation

chip_sel_pin=1 differentiate command codes from data, these are
processed by this macro. This is an important
function that this macro achieves using constants
and parameters. In fact, everything that is sent to
your LCD is handled by this macro.

Let's have a look at a gLCD Manual (ILI9163) which specifies how this should be
performed. The digital pin a0_pin performs the function control labelled D/C for this
device. You will notice, this a0_pin is controlled by the Parameter called .Command
(not to be confused by a variable called Command).

O G G L1810

— CSX \ /

@
et e 4 s T [L L LU L 1

o O
L spa 7Y D6 ¥ D5 Y D4} D3 Y D2 Y D1 Y DO A& HiZ 07
(SDI
o {0 B AR
(Driver to MCU) <\¢5|30)

Dummy Clock Cycle

Figure7: 4-pins Setial Protocol (for RDID command: 24-bits read)

N % E . |
E Globals These two variable constants play a key role in the
B - Constants SendByte macro

= Al

When the D/C signal is LOW — the LCD expects — command codes
When the D/C signal is high — the LCD expect — data

It only needs to be in the correct state at the beginning of the
packet!

So, how do we achieve this?

Let's have a look at the SendByte macro again.

This macro has two parameters:

- Command

- LCD _Out
So, when this macro is called, these two
parameters are requested by the macro.

Looking at the macro Initialise that calls the
SendByte macro:

There is a long list of macro call's for the
SendByte macro, as shown:

The Parameters on the left are those
expected by the SendByte:

Command and LCD_Out

They must not be
confused with
variables

Therefore, if we send the variable called Command, we are sending the value = 0
And if we send the variable called Parameter, we are sending the value = 1

This variable is now carried into the SendByte macro, making it possible for you to
use it to control the a0_pin set by the variable within this macro itself.

(Place your mouse over each of the variable constants in the Project explorer
window to see their values) see above!

a0_pin is controlled by the
Select Display Parameter called .Command which
chip_sel_pin=0 holds the variable value:

Command / eitherOor1

al_pin=.Command

Call ComponentMacro
cal_spil:Master_Byte(LCD_Ouf)

Calculation
chip_sel_pin=1

g
& =
o]
*
9= L]
L
0
S
L

The base UART SPI CAL is called
here and the data is sent to the
device by obtaining data from the
LCD_Out variable.

Therefore, if you wish to use the 12C base CAL, it only this macro call here, that will
be changed.

Compare this to the 4-Pins Serial protocol and you will then discover, that the routine
is able to switch the a0_pin to whatever setting is required just by the parameter set
by the variable it contains (low for commands and high for data).

If you wish to change the way the LCD is controlled, it is with this macro (SendByte)
that you would implement the control strategy for your device, using digital control pins
that you have installed/set-up in your components properties panel. | have only ever
found, where commands and data need to specifically differentiated, there has only
ever been one digital control pin used. Their names may change, but their function is
fundamentally similar.

| believe the hardest part is getting the command codes set correctly. Everything else
would possibly remain unchanged.

Step 5- Initialisation Commands.

To get your copy of the command codes to initialise for your chosen gLCD, it will of
course involve thorough research, but it will be worth the effort. Here is an example of
what you are looking for: example - SSD1306 specification

3 Software Configuration
S5D1306 has internal command registers that are used to configure the operations of the driver IC.
After reset, the registers should be set with appropriate values in order to function well. The registe1rs
can be accessed by MPU interface in either 6800, 8080, SPI type with D/CE pin pull low or using I°C
interface. Below is an example of initialization flow of SS01306. The values of registers depend on
different condition and application.

Figure 2 : Software Initialization Flow Chart

1

Set Contrast
Control
81h, TFh
Set MUX Disable Entire
Ratio Display On
ABh, 3Fh Adh
Set Display Set Normal
Offset Display
D3h, 00h Agh
Set Display Set Osc
Start Line Frequency
40n Dsh, 80h
Set Segment Enable charge
re-map pump regulator
ADR/ATh 8D0h, 14h

Set COM Cutput - 1
Scan Direction Dlsﬂ:;s;On

COhCEh

|

Set COM Pins
hardware
configuration
DaAh, 02

L |

This one is for the SSD1306. Within the document, you will find what each of the code
blocks (flowchart) are, for setting up the LCD display, helping you to locate the ones
of interest to yourself. It will also help identify command codes from data settings for
each code block. Yes, it will be frustrating, but it's what many coders are prepared to
do for that special project.

10

Flowcode 7 has many of the initialise commands already built in. You can find them
as shown below.

Stat a new project and load the LCD component that matches the one you wish to
develop. Using the ‘View C’ code under the Build menu, will allow inspection of the
command codes. However, you may wish to research any further options available by
obtaining the displays specification manual.

1494
14895
1496
1487
1498
1488
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
151z
1513
1514
1515
1516
1517
1518
1518
1520
1521
152z
1523
1524
1525
1526
1527
1528
1528
1530
1531
1532
1533
1534
1535
1536
1537
1538
1538
1540
1541
154z
1543
1544
1545
1546
1547
1548
1549

Use :@TIr

he Init macro must be called once to initialise the Graphical LCD display before any other Graphical LCD cc

void FCD_0Ofc51_gLCD SSD1306_ Initialise()

/{Local variable definitions
MX UINT& FCL_RED;

MX UINTE FCL_GREEN;
MX UINTS FCL_BLUE;

FCP_SET (B, A&,
FCE_SET (B, 3,
FCP_SET (B, A,
FCE_SET (B, 3,
FCE_SET (S, &,
FCE_SET (B, 3,

Oxl, 0Ox0,

0Ox20, O=5,
Ox10, O=x4,

Ox2, 0O=3,
0x4, 0x2,
Ox2, O=l,

FCI_DELAYBYTE M5 (200):

FCP_SET (B, A&,

0x20, O=xE,

FCI_DELAYBYTE M5 (200):

FCP_SET (B, 3,

0Ox20, O=5,

FCI_DELAYBYTE M5(200);

FCD 0fc51_ gLCD 55D1306_ SendCommand (OxRAE) ;
FCD_0fc51_gLCD 55D1306_ SendCommand (0xD5) ;
FCD_0fc51_gLCD SSD1306_ SendCommand (0x80) ;

FCD_0fc51 gLCD_SSD1306 SendCommand (OxAB) ;

$if (1) // €4

FCD_0fc51_gLCD 5SD1306_ SendCommand (0x3F) ;

== &4

1}
1):
1y s
a)y:
a):
a):

Q)

1):

= has been optimised out by the pre-processor

FCD_0fc51_gLCD 55D1306_ SendCommand (0xD3) ;
FCD_0fc51_gLCD 55D1306_ SendCommand (0x00) ;
FCD_0fc51_gLCD 55D1306_ SendCommand (0x40) ;
FCD_0fc51_gLCD 5SD1306_ SendCommand (0x8D) ;

FCD 0fc51 gLCD SSD1306 SendCommand (Ox14);

FCD 0fc51 gLCD 55D130&

SendCommand (Ox&A1) 2

Once you have finished developing the control strategy for your display using the
SendByte macro and set up the command codes, all that is required now is to
configure your LCD display component ready for exporting to you library.

11

gled_ILIY

Step 6 —LCD component Configuration ;L —

Ctri=N

From the menu — File, select (Component Configuration)

All the options for how the component is used by Flowcode 7
are selected from here.

There are three-tab menus.

Setup - Interface - Resources

Component Management

Advanced

Major 1 |-

ponent in a
nt inherits a cat

Setup -Standard

| would suggest you start with a status
of — Development. It is up to you if you
chose to place it in a category. The icon
e will help identify its status from other
components.

modules and EB084 E-bloc

Fill in as much details as possible.

Component Management

Advanced

Interface Resources

Tick the box — Inherit macros from base
component.

The GUID MUST be updated by clicking on
the edit and select New. You only need to do
this once. When you are developing your
component, changes can be made and will
always be referenced to this new component
with this GUID.

12

Interface

All the macros associated to this
component are shown on the left. You
need to select which macros will be set
as (downloadable). The other macros
should be set to Hidden. They will be
embedded with the finished component.

No changes are needed for the
resources, or until you can develop your
own 3D models and include them with
your component.

Component Management

Setup

I Macros
B macro

otsim(})
I BacklightOff()

Fiter for public variables

Details

el with the curzent backgroun.

When you have completed the components configuration, all that remains is to export
the component to the library location you have set up in the global options.

T 60 L9163 awisz0)

This is how your finished gLCD will look.

13

If you click onto the component to select the
rectangle shape, you can change its
appearance/colour using the colour
properties. It just gives it that personal
appearance to suit yourself.

You can even add text to further add more
clarity to the devices identification.

Your finished component will look something like that shown above, minus the base

UART SPI CAL of course.

That's it, your all done.

14

