Example of creating a Flowcode 7 component for an 12C based device, such as a
LM75B digital temperature sensor.

Start by creating a new Flowcode project. It does not matter what the target is, although it helps if you choose a
target that supports I°C. We can now start our new component by using existing base components.

Building from components

The main function the device,
such as the LM75B used in this
example, is to provide us with a
value for the measured
temperature.

So we need a means to set this
value when we are running the
simulation of an application that
uses our new component.

A linear scale is a good way to
provide it, so let’s add one.
Select the “Dash Scale Vertical”
from the “Simulation” list and
drag it onto the panel.

Set the scale component properties,

4

<P ﬁ Simulation TI)ois &i Shapes
P

° D Printe -

such as the minimum, maximum and resolution values.

For simplicity, for now we have set the minimum to 0
and the maximum to 1023, the range for a 10 bit resolution.

For advanced users:

This range could be set to floating point values
to indicate an actual temperature value.

Q":P G Code Parser I
@‘. Animator
Color Flasher
é? Component Label
6‘3 Component Labels
-%- Controls
B Dashboard Text
MIAC Keypad
31 MIAC Keypad (V3)
[l Marking control
Meter Square
=) §° Scale Arc Template
'e Dashboard Meter
& Dashboard Knob

=] IH_HHHI cala

@ simubation Slide Switch

. Simulation Push Switch
- .. S

dash_scale_vert1
; Properties o-:)*‘Position Macros
=8 Component
Handle dash_scale_vert1
mYPe Dash Scale Vertical
= properties
-2 Function Control
Maximum 1023.000000
Minimum 0.000000
- Style
- % BG Color M 0ooo00

% Positive Color [l 00C000
% Negative Color [0080FF
% Label Color M 696969

' Bezel M 202020
g Resolution 10
(=& Marks
Divisions 8
Subdivisions 8
=~ Numbers
Decimals 0
Text Size % 6
f Font Arial Narrow
=~ Label
Text Value

Text Size % 8
- f Font Arial Narrow

4 b X

Properties]

The LM75B device interface is I°C, so the Flowcode
I°C CAL component will help us, drag one to the
panel from Tools component list.

cal_i2c1

Set the I’C properties, such as the Baud Rate, to match the
device.

The properties that are going to be user configurable in our new

component need to be set to “Expose”, so do this for:
e Channel
e SDA
e SCL

Shapes

s=m= Matrix Tools

- fD Auto Version Ident
;b Auto Version Ident

24 |,‘:§|, Device Helper

; H E-block Helper

(I)'il IntOsc Helper

11 Scope monitor

TT Modelling Components

! D Bezel Radiused

- @ Clone Matrix

= E@:‘ Formula Flowcode #
. Maze Generator (HI

a O Target Chip

E Peripheral CAL

. Fanc

cal_i2c1

® Properties r_;h Position

Component

4" Handle

—— Type
Properties

B

Expose

= Baud Select

Baud Rate

£ Slew Rate Control
S SMBus Inputs
-+ Stop Delay

= Simulation

-4 Scope Traces
= Console Data

T 1] Macros

cal_i2c1
12C Free

Channel 1
SPORTC.4
SPORTC.3
100KHz
100000
Disabled
Disabled
Yes

No
No

Creating the component interface

From the device datasheet decide the APl (macros) that you require to access the device functionality.
For this example we are assuming a device that provides a digital value of temperature, but it could just as easily
be a voltage, current or some other sensor.

R Edit M Detail
Create a new macro, called say GetValue, to do this it Macro Details =

go to menu MACRO->New '°:

Enter the name of the macro, “GetValue”. Description of new macro:

t@ Parameters){= Constants [| Variables

Set the Return type to UINT.

This macro “GetValue” will be the macro that is part
of the APl we provide for the downloaded target
component.

Cancel

We also require a macro that provides the same functionality for the simulation.

So click on the GetValue tab, then go to menu MACRO->Duplicate,
enter “GetValueSim” as the name of this new macro and click OK.

GetValue REG{EESTIE Main

In GetValueSim macro add a call to
dash_scale_vertl::GetValue
and put the return value into “.Return”

This will provide the slider value when our new
component is run in simulation.

Call ComponentMacro
.Return=dash_scale_vert1::GetValue()

Creating additional component properties

In the Properties window, select the “panel”
Give our new component a hame, such as “DigitalTemperture”

Note that we can see our “exposed” properties, Channel, SDA
and SCL from the 1°C CAL.

The LM75B I°C device has a bus address that is configurable via
the AQ, Al and A2 pins.

So here we use “Add new” property

Give this new property the cosmetic name “Device Address”
Select “Unsigned integer” as the property type.

We also give the property a variable name of
“DEVICE_ADDRESS”. This is the name that will be used to
reference this value within the component Flowchart code.

Now we see the properties that will be available in our
component.

These user configurable properties can be given default values.
For example a “Device Address” of 72 can be set, for the case
where address pins A0, AL and A2 are all pulled low.

Enter this value into the box alongside the property name.

Panel

Z = Properties ~_:|~ Position ﬂ:ﬂ Macros

|= Component
-/’ Handle DigitalTemperature

Channel 1

$PORTC.4
$PORTC.3

v Show titles
Show variables

New category

Edit properties X
Cosmetic name
Device Address -
Property type
Unsigned integer v
Property variable
|DEVICE ADDRESS

[v] Visible [v! Writable | Hexadecimal

["] Generate a define for the property -

® [Gres

Panel

' Properties ‘4:}', Position U:]Macros

I.r; Component

i Handle DigitalTemperature
I= Properties

S Device Address IEP)

~-E Channel Channel 1

i SDA SPORTC.4

... 4 SCL $PORTC.3

Completing the component macros

Getting the value from the actual
device involves reading a pair of
register values from the device, so
it makes sense for us to first write
a generic macro that reads a pair
of bytes from a given address in
the device and returning it as an
integer.

So here is a new macro called
ReadInt that has a parameter
“Address” and returns a UINT.

The devices’ I°C bus address is
determined from our property
DEVICE_ADDRESS

GetValue GetValueSim Main BiEELIGT

Read double byte data from register ataddress

41’.

Call ComponentMacro
cal_i2c1:Master_Start()

Call ComponentMacro
cal_i2c1:Master_TxByte(DEVICE_ADDRESS << 1)

Call ComponentMacro
cal_i2c1:Master_TxByte(.address)

Call ComponentMacro
cal_i2c1::Master_Restart()

Call ComponentMacro
cal_i2c1:Master_TxByte((DEVICE_ADDRESS << 1) +1)

Call ComponentMacro
HB=cal_i2c1:Master_RxByte(0)

Call ComponentMacro
.LB=cal_i2c1::Master_RxByte(1)

Call ComponentMacro
cal_i2c1::Master_Stop()

Calculation
.Return=(HB << 8) OR LB

For this particular device the digital temperature is read
from the first two locations of its internal registers.

So our GetValue macro simply calls ReadInt with an
address parameter of 0.

We also require an initialisation macro that initialises the
IC CAL component.

lﬁﬁa GetValueSim Main ReadInt

CallMacro
Return=ReadInt(0)

GetValue ReadInt GetValueSim Main Iﬁl

Call ComponentMacro
cal_i2c1::Master_Init()

Exporting the component

We are now ready to make our component.

Get the configuration dialog from menu
FILE->Component configuration

Go to the “Interface” tab and set:

o “GetValue” macro as type
“Downloadable macro” and set its
Simulation macro as “GetValueSim”

o “GetValueSim” as type “Hidden macro”

o “Init” macro as type “Downloadable
macro”

e “ReadInt” macro as type
“Downloadable macro”

Go to the “Setup” “Standard” tab and give the
component a Cosmetic name.

The category that the component will appear
under can be set. “Misc” is the default.

Other details can be added, such as a
description of the component and keywords for
the search feature of Flowcode.

Component Management X
Setup Interface Resources
i i} Type of macro
[T Macros {5 Giobals Uk
- : Downloadable macro X
i= Macro Simulation macro
i-— <Add new> e
] IGec.al.zeS:.rr. v
i GetValueSim()
i Init() I .
s ReadInt()
Filter for public variables
Details
Name GetValue ()
Return UINT
®
Component Management X
Setup Interface Resources
Name
[Digitall‘emperature
Standard = Advanced
Version Major 1 | 2 Minor 0 | - Status Release g
Author Manufacturer name
pesilietic name Manufacturer code
Digital Temperature
Misc =
lcon
. | Use an image of the panel Save
Description
Additional Keywords
0

Go to the ”Setup” “Advanced” tab

C nt Management
‘ Setup I}en’ace Resources

Click the GUID Edit button.
Click the “New” button and then “OK” to create
a new GUID.

NOTE that this only requires doing once and
will be saved with the project. The GUID
identifies the component in Flowcode. Only
change this again if you are creating an entirely
new component based on this one.

Then click the “OK” button to close the
Component Management dialog.

If not already done, Save your project.

s ol

|DigicalTemperature

:Lock aspect ratio for component:

v| Auto center component on export
["] Unit scale component on export
X 1,000000 < JIEY 1.000000
[Use supplementary header code

| Dynamically load component

Inherit macros from a sub-component

GUID
84f06ea1-7a19-4e03-b595-5b40e87aa5¢1
(Digtal Temperature)

1 Z 1.000000

(]

Now export this new component via the menu FILE->Export Component

It is important that you save any custom components to a directory other than the Flowcode components
directory. Otherwise if you store them along with the Flowcode released components your custom ones might

get deleted during an upgrade process.

Your custom components location directory can be added to the Flowcode search path by adding your directory

in the dialog found at menu VIEW->Global Options

Options
Flowchart Scheme Annotations

Send compiler output to...

Application

Editor Locations Scopes

[S (srcdir)

|v| Create a backup file as...

e
B

.fcfx.001

Look for components in...
C:\Flowcode7\nonrelease;

Look for dictionaries in...

@ Restore Defaults

Clear component cache

Preview

Cancel

Close Flowcode and re-open to include your new component and create a test program.

Your new component should appear in the default “Misc” list, if not changed, otherwise search for it by name.

Advanced options

You can create an additional component Category for your components by adding it to the list found in the xml
file "cmpntcats.xml" in your Flowcode installation components directory.

Using a simple text editor, add your category before the final </root> tag, for example:
<category name="User" hint=""icon="$(cmpntdir)\catimgs\User.png" tooltip="" />
Edit your component source project file to use this category by going to the component configuration dialog

FILE->Component configuration. Change the component category in the “Setup” “Standard” tab.
Save the project and export the changes from the menu FILE->Export Component

Leigh Morris 24™ July 2017 ©Matrix TSL 2017

